
Kelsey Hightower,
 Brendan Burns & Joe Beda

DIVE INTO THE FUTURE OF INFRASTRUCTURE

Kubernetes
Up & Running

Compliments of

FREE CHAPTERS

Realize the
full potential
of Kubernetes.

Unleash the
Power of
Kubernetes.

• Easily get your Kubernetes cluster
 up and running with Heptio training,
 services, and support

• Simplify operations with our
 open source tools and products

 heptio.com

http://heptio.com

This excerpt contains Chapters 4–7 and 11–12 of Kubernetes:
Up and Running. The final book is available for sale on

oreilly.com and through other retailers.

Kelsey Hightower, Brendan Burns, and Joe Beda

Kubernetes: Up and Running
Dive into the Future of Infrastructure

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93567-5

[LSI]

Kubernetes: Up and Running
by Kelsey Hightower, Brendan Burns, and Joe Beda

Copyright © 2017 Kelsey Hightower, Brendan Burns, and Joe Beda. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Angela Rufino
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Rachel Head

Indexer: Kevin Broccoli
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2017: First Edition

Revision History for the First Edition
2017-09-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491935675 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491935675

Table of Contents

Foreword. ix

4. Common kubectl Commands. 1
Namespaces 1
Contexts 1
Viewing Kubernetes API Objects 2
Creating, Updating, and Destroying Kubernetes Objects 3
Labeling and Annotating Objects 3
Debugging Commands 4
Summary 4

5. Pods. 5
Pods in Kubernetes 6
Thinking with Pods 6
The Pod Manifest 7

Creating a Pod 8
Creating a Pod Manifest 8

Running Pods 9
Listing Pods 9
Pod Details 10
Deleting a Pod 11

Accessing Your Pod 11
Using Port Forwarding 12
Getting More Info with Logs 12
Running Commands in Your Container with exec 12
Copying Files to and from Containers 13

Health Checks 13
Liveness Probe 14

v

Readiness Probe 15
Types of Health Checks 15

Resource Management 15
Resource Requests: Minimum Required Resources 16
Capping Resource Usage with Limits 18

Persisting Data with Volumes 18
Using Volumes with Pods 19
Different Ways of Using Volumes with Pods 19
Persisting Data Using Remote Disks 20

Putting It All Together 21
Summary 22

6. Labels and Annotations. 23
Labels 23

Applying Labels 24
Modifying Labels 26
Label Selectors 26
Label Selectors in API Objects 28

Annotations 29
Defining Annotations 30

Cleanup 30
Summary 31

7. Service Discovery. 33
What Is Service Discovery? 33
The Service Object 34

Service DNS 35
Readiness Checks 36

Looking Beyond the Cluster 37
Cloud Integration 38
Advanced Details 39

Endpoints 40
Manual Service Discovery 41
kube-proxy and Cluster IPs 42
Cluster IP Environment Variables 42

Cleanup 43
Summary 43

11. ConfigMaps and Secrets. 45
ConfigMaps 45

Creating ConfigMaps 45
Using a ConfigMap 46

vi | Table of Contents

Secrets 49
Creating Secrets 50
Consuming Secrets 51
Private Docker Registries 52

Naming Constraints 53
Managing ConfigMaps and Secrets 54

Listing 54
Creating 55
Updating 55

Summary 57

12. Deployments. 59
Your First Deployment 60

Deployment Internals 60
Creating Deployments 61
Managing Deployments 63
Updating Deployments 63

Scaling a Deployment 63
Updating a Container Image 64
Rollout History 65

Deployment Strategies 68
Recreate Strategy 68
RollingUpdate Strategy 68
Slowing Rollouts to Ensure Service Health 72

Deleting a Deployment 73
Summary 74

Table of Contents | vii

Foreword

Three years ago, I was part of the small team that created Kubernetes—with the goal
of radically simplifying the task of building, deploying, and maintaining distributed
systems. We wanted to surface the lessons from 10+ years at Google to help compa‐
nies across every industry power mission-critical applications. The uptake of Kuber‐
netes since its inception has been truly incredible—the technology is actively being
used by more than half of Fortune 100 companies and has incredibly strong commu‐
nity engagement witnessed in its 27,000 GitHub stars and 1,400 contributors.

I co-authored this book to help developers and operators get started with Kubernetes.
The book is a practical guide to the core concepts of Kubernetes. It also delves into
the reasoning behind choosing those concepts and how they can be used to improve
the development, delivery, and maintenance of distributed applications. The excerpt
begins with more introductory topics including how to take advantage of common
commands for the kubectl command-line tool and how to deploy an application
using pods, labels, and annotations, and follows with more advanced topics such as
service discovery, ConfigMaps, secrets, and the deployment object.

I started Heptio with fellow Kubernetes co-creator Craig McLuckie to bring the
power of cloud native systems and Kubernetes to every organization. While the inter‐
net giants were the first to reap the benefits of cloud native architectures, through
container technology and API-driven practices, IT can transform itself into a driving
force for any business in a hybrid, multi-cloud environment.

We hope you enjoy the excerpt, and that you consider Heptio to jump start your jour‐
ney with Kubernetes.

— Joe Beda
Co-Founder and CTO, Heptio

ix

CHAPTER 4

Common kubectl Commands

The kubectl command-line utility is a powerful tool, and in the following chapters
you will use it to create objects and interact with the Kubernetes API. Before that,
however, it makes sense to go over the basic kubectl commands that apply to all
Kubernetes objects.

Namespaces
Kubernetes uses namespaces to organize objects in the cluster. You can think of each
namespace as a folder that holds a set of objects. By default, the kubectl command-
line tool interacts with the default namespace. If you want to use a different name‐
space, you can pass kubectl the --namespace flag. For example,
kubectl --namespace=mystuff references objects in the mystuff namespace.

Contexts
If you want to change the default namespace more permanently, you can use a con‐
text. This gets recorded in a kubectl configuration file, usually located at
$HOME/.kube/config. This configuration file also stores how to both find and
authenticate to your cluster. For example, you can create a context with a different
default namespace for your kubectl commands using:

$ kubectl config set-context my-context --namespace=mystuff

This creates a new context, but it doesn’t actually start using it yet. To use this newly
created context, you can run:

$ kubectl config use-context my-context

1

Contexts can also be used to manage different clusters or different users for authenti‐
cating to those clusters using the --users or --clusters flags with the set-context
command.

Viewing Kubernetes API Objects
Everything contained in Kubernetes is represented by a RESTful resource. Through‐
out this book, we refer to these resources as Kubernetes objects. Each Kubernetes
object exists at a unique HTTP path; for example, https://your-k8s.com/api/v1/name
spaces/default/pods/my-pod leads to the representation of a pod in the default name‐
space named my-pod. The kubectl command makes HTTP requests to these URLs to
access the Kubernetes objects that reside at these paths.

The most basic command for viewing Kubernetes objects via kubectl is get. If you
run kubectl get <resource-name> you will get a listing of all resources in the cur‐
rent namespace. If you want to get a specific resource, you can use kubectl get
<resource-name> <object-name>.

By default, kubectl uses a human-readable printer for viewing the responses from
the API server, but this human-readable printer removes many of the details of the
objects to fit each object on one terminal line. One way to get slightly more informa‐
tion is to add the -o wide flag, which gives more details, on a longer line. If you want
to view the complete object, you can also view the objects as raw JSON or YAML
using the -o json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove the headers,
which is often useful when combining kubectl with Unix pipes (e.g., kubectl … |
awk …). If you specify the --no-headers flag, kubectl will skip the headers at the top
of the human-readable table.

Another common task is extracting specific fields from the object. kubectl uses the
JSONPath query language to select fields in the returned object. The complete details
of JSONPath are beyond the scope of this chapter, but as an example, this command
will extract and print the IP address of the pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

If you are interested in more detailed information about a particular object, use the
describe command:

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object as well as
any other relevant, related objects and events in the Kubernetes cluster.

2 | Chapter 4: Common kubectl Commands

https://your-k8s.com/api/v1/namespaces/default/pods/my-pod
https://your-k8s.com/api/v1/namespaces/default/pods/my-pod

Creating, Updating, and Destroying Kubernetes Objects
Objects in the Kubernetes API are represented as JSON or YAML files. These files are
either returned by the server in response to a query or posted to the server as part of
an API request. You can use these YAML or JSON files to create, update, or delete
objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use kubectl to
create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s obtained
from the object file itself.

Similarly, after you make changes to the object, you can use the apply command
again to update the object:

$ kubectl apply -f obj.yaml

If you feel like making interactive edits, instead of editing a local
file, you can instead use the edit command, which will download
the latest object state, and then launch an editor that contains the
definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the
Kubernetes cluster.

When you want to delete an object, you can simply run:

$ kubectl delete -f obj.yaml

But it is important to note that kubectl will not prompt you to confirm the delete.
Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects
Labels and annotations are tags for your objects. We’ll discuss the differences in
Chapter 6, but for now, you can update the labels and annotations on any Kubernetes
object using the annotate and label commands. For example, to add the color=red
label to a pod named bar, you can run:

$ kubectl label pods bar color=red

Creating, Updating, and Destroying Kubernetes Objects | 3

The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing label. To do this,
you need to add the --overwrite flag.

If you want to remove a label, you can use the -<label-name> syntax:

$ kubectl label pods bar -color

This will remove the color label from the pod named bar.

Debugging Commands
kubectl also makes a number of commands available for debugging your containers.
You can use the following to see the logs for a running container:

$ kubectl logs <pod-name>

If you have multiple containers in your pod you can choose the container to view
using the -c flag.

By default, kubectl logs lists the current logs and exits. If you instead want to con‐
tinuously stream the logs back to the terminal without exiting, you can add the -f
(follow) command-line flag.

You can also use the exec command to execute a command in a running container:

$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container so that
you can perform more debugging.

Finally, you can copy files to and from a container using the cp command:

$ kubectl cp <pod-name>:/path/to/remote/file /path/to/local/file

This will copy a file from a running container to your local machine. You can also
specify directories, or reverse the syntax to copy a file from your local machine back
out into the container.

Summary
kubectl is a powerful tool for managing your applications in your Kubernetes cluster.
This chapter has illustrated many of the common uses for the tool, but kubectl has a
great deal of built-in help available. You can start viewing this help with:

kubectl help

or:

kubectl help command-name

4 | Chapter 4: Common kubectl Commands

CHAPTER 5

Pods

In earlier chapters we discussed how you might go about containerizing your applica‐
tion, but in real-world deployments of containerized applications you will often want
to colocate multiple applications into a single atomic unit, scheduled onto a single
machine.

A canonical example of such a deployment is illustrated in Figure 5-1, which consists
of a container serving web requests and a container synchronizing the filesystem with
a remote Git repository.

Figure 5-1. An example Pod with two containers and a shared filesystem

At first, it might seem tempting to wrap up both the web server and the Git syn‐
chronizer into a single container. After closer inspection, however, the reasons for the
separation become clear. First, the two different containers have significantly different
requirements in terms of resource usage. Take, for example, memory. Because the
web server is serving user requests, we want to ensure that it is always available and
responsive. On the other hand, the Git synchronizer isn’t really user-facing and has a
“best effort” quality of service.

5

Suppose that our Git synchronizer has a memory leak. We need to ensure that the Git
synchronizer cannot use up memory that we want to use for our web server, since
this can affect web server performance or even crash the server.

This sort of resource isolation is exactly the sort of thing that containers are designed
to accomplish. By separating the two applications into two separate containers we can
ensure reliable web server operation.

Of course, the two containers are quite symbiotic; it makes no sense to schedule the
web server on one machine and the Git synchronizer on another. Consequently,
Kubernetes groups multiple containers into a single, atomic unit called a Pod. (The
name goes with the whale theme of Docker containers, since a Pod is also a group of
whales.)

Pods in Kubernetes
A Pod represents a collection of application containers and volumes running in the
same execution environment. Pods, not containers, are the smallest deployable arti‐
fact in a Kubernetes cluster. This means all of the containers in a Pod always land on
the same machine.

Each container within a Pod runs in its own cgroup, but they share a number of
Linux namespaces.

Applications running in the same Pod share the same IP address and port space (net‐
work namespace), have the same hostname (UTS namespace), and can communicate
using native interprocess communication channels over System V IPC or POSIX
message queues (IPC namespace). However, applications in different Pods are iso‐
lated from each other; they have different IP addresses, different hostnames, and
more. Containers in different Pods running on the same node might as well be on
different servers.

Thinking with Pods
One of the most common questions that occurs in the adoption of Kubernetes is
“What should I put in a Pod?”

Sometimes people see Pods and think, “Aha! A WordPress container and a MySQL
database container should be in the same Pod.” However, this kind of Pod is actually
an example of an antipattern for Pod construction. There are two reasons for this.
First, Wordpress and its database are not truly symbiotic. If the WordPress container
and the database container land on different machines, they still can work together
quite effectively, since they communicate over a network connection. Secondly, you
don’t necessarily want to scale WordPress and the database as a unit. WordPress itself
is mostly stateless, and thus you may want to scale your WordPress frontends in

6 | Chapter 5: Pods

response to frontend load by creating more WordPress Pods. Scaling a MySQL data‐
base is much trickier, and you would be much more likely to increase the resources
dedicated to a single MySQL Pod. If you group the WordPress and MySQL containers
together in a single Pod, you are forced to use the same scaling strategy for both con‐
tainers, which doesn’t fit well.

In general, the right question to ask yourself when designing Pods is, “Will these con‐
tainers work correctly if they land on different machines?” If the answer is “no,” a Pod
is the correct grouping for the containers. If the answer is “yes,” multiple Pods is
probably the correct solution. In the example at the beginning of this chapter, the two
containers interact via a local filesystem. It would be impossible for them to operate
correctly if the containers were scheduled on different machines.

In the remaining sections of this chapter, we will describe how to create, introspect,
manage, and delete Pods in Kubernetes.

The Pod Manifest
Pods are described in a Pod manifest. The Pod manifest is just a text-file representa‐
tion of the Kubernetes API object. Kubernetes strongly believes in declarative configu‐
ration. Declarative configuration means that you write down the desired state of the
world in a configuration and then submit that configuration to a service that takes
actions to ensure the desired state becomes the actual state.

Declarative configuration is different from imperative configura‐
tion, where you simply take a series of actions (e.g., apt-get
install foo) to modify the world. Years of production experience
have taught us that maintaining a written record of the system’s
desired state leads to a more manageable, reliable system. Declara‐
tive configuration enables numerous advantages, including code
review for configurations as well as documenting the current state
of the world for distributed teams. Additionally, it is the basis for
all of the self-healing behaviors in Kubernetes that keep applica‐
tions running without user action.

The Kubernetes API server accepts and processes Pod manifests before storing them
in persistent storage (etcd). The scheduler also uses the Kubernetes API to find Pods
that haven’t been scheduled to a node. The scheduler then places the Pods onto nodes
depending on the resources and other constraints expressed in the Pod manifests.
Multiple Pods can be placed on the same machine as long as there are sufficient
resources. However, scheduling multiple replicas of the same application onto the
same machine is worse for reliability, since the machine is a single failure domain.
Consequently, the Kubernetes scheduler tries to ensure that Pods from the same
application are distributed onto different machines for reliability in the presence of

The Pod Manifest | 7

such failures. Once scheduled to a node, Pods don’t move and must be explicitly
destroyed and rescheduled.

Multiple instances of a Pod can be deployed by repeating the workflow described
here. However, ReplicaSets (Chapter 8) are better suited for running multiple instan‐
ces of a Pod. (It turns out they’re also better at running a single Pod, but we’ll get into
that later.)

Creating a Pod
The simplest way to create a Pod is via the imperative kubectl run command. For
example, to run our same kuard server, use:

$ kubectl run kuard --image=gcr.io/kuar-demo/kuard-amd64:1

You can see the status of this Pod by running:

$ kubectl get pods

You may initially see the container as Pending, but eventually you will see it transition
to Running, which means that the Pod and its containers have been successfully cre‐
ated.

Don’t worry too much about the random strings attached to the end of the Pod name.
This manner of creating a Pod actually creates it via Deployment and ReplicaSet
objects, which we will cover in later chapters.

For now, you can delete this Pod by running:

$ kubectl delete deployments/kuard

We will now move on to writing a complete Pod manifest by hand.

Creating a Pod Manifest
Pod manifests can be written using YAML or JSON, but YAML is generally preferred
because it is slightly more human-editable and has the ability to add comments. Pod
manifests (and other Kubernetes API objects) should really be treated in the same
way as source code, and things like comments help explain the Pod to new team
members who are looking at them for the first time.

Pod manifests include a couple of key fields and attributes: mainly a metadata section
for describing the Pod and its labels, a spec section for describing volumes, and a list
of containers that will run in the Pod.

In Chapter 2 we deployed kuard using the following Docker command:

$ docker run -d --name kuard \
 --publish 8080:8080 \
 gcr.io/kuar-demo/kuard-amd64:1

8 | Chapter 5: Pods

A similar result can be achieved by instead writing Example 5-1 to a file named
kuard-pod.yaml and then using kubectl commands to load that manifest to Kuber‐
netes.

Example 5-1. kuard-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Running Pods
In the previous section we created a Pod manifest that can be used to start a Pod run‐
ning kuard. Use the kubectl apply command to launch a single instance of kuard:

$ kubectl apply -f kuard-pod.yaml

The Pod manifest will be submitted to the Kubernetes API server. The Kubernetes
system will then schedule that Pod to run on a healthy node in the cluster, where it
will be monitored by the kubelet daemon process. Don’t worry if you don’t under‐
stand all the moving parts of Kubernetes right now; we’ll get into more details
throughout the book.

Listing Pods
Now that we have a Pod running, let’s go find out some more about it. Using the
kubectl command-line tool, we can list all Pods running in the cluster. For now, this
should only be the single Pod that we created in the previous step:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kuard 1/1 Running 0 44s

You can see the name of the Pod (kuard) that we gave it in the previous YAML file. In
addition to the number of ready containers (1/1), the output also shows the status,
the number of times the Pod was restarted, as well as the age of the Pod.

If you ran this command immediately after the Pod was created, you might see:

Running Pods | 9

NAME READY STATUS RESTARTS AGE
kuard 0/1 Pending 0 1s

The Pending state indicates that the Pod has been submitted but hasn’t been sched‐
uled yet.

If a more significant error occurs (e.g., an attempt to create a Pod with a container
image that doesn’t exist), it will also be listed in the status field.

By default, the kubectl command-line tool tries to be concise in
the information it reports, but you can get more information via
command-line flags. Adding -o wide to any kubectl command
will print out slightly more information (while still trying to keep
the information to a single line). Adding -o json or -o yaml will
print out the complete objects in JSON or YAML, respectively.

Pod Details
Sometimes, the single-line view is insufficient because it is too terse. Additionally,
Kubernetes maintains numerous events about Pods that are present in the event
stream, not attached to the Pod object.

To find out more information about a Pod (or any Kubernetes object) you can use the
kubectl describe command. For example, to describe the Pod we previously cre‐
ated, you can run:

$ kubectl describe pods kuard

This outputs a bunch of information about the Pod in different sections. At the top is
basic information about the Pod:

Name: kuard
Namespace: default
Node: node1/10.0.15.185
Start Time: Sun, 02 Jul 2017 15:00:38 -0700
Labels: <none>
Annotations: <none>
Status: Running
IP: 192.168.199.238
Controllers: <none>

Then there is information about the containers running in the Pod:

Containers:
 kuard:
 Container ID: docker://055095…
 Image: gcr.io/kuar-demo/kuard-amd64:1
 Image ID: docker-pullable://gcr.io/kuar-demo/kuard-amd64@sha256:a580…
 Port: 8080/TCP
 State: Running
 Started: Sun, 02 Jul 2017 15:00:41 -0700

10 | Chapter 5: Pods

 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-cg5f5 (ro)

Finally, there are events related to the Pod, such as when it was scheduled, when its
image was pulled, and if/when it had to be restarted because of failing health checks:

Events:
 Seen From SubObjectPath Type Reason Message
 ---- ---- ------------- -------- ------ -------
 50s default-scheduler Normal Scheduled Success…
 49s kubelet, node1 spec.containers{kuard} Normal Pulling pulling…
 47s kubelet, node1 spec.containers{kuard} Normal Pulled Success…
 47s kubelet, node1 spec.containers{kuard} Normal Created Created…
 47s kubelet, node1 spec.containers{kuard} Normal Started Started…

Deleting a Pod
When it is time to delete a Pod, you can delete it either by name:

$ kubectl delete pods/kuard

or using the same file that you used to create it:

$ kubectl delete -f kuard-pod.yaml

When a Pod is deleted, it is not immediately killed. Instead, if you run kubectl get
pods you will see that the Pod is in the Terminating state. All Pods have a termina‐
tion grace period. By default, this is 30 seconds. When a Pod is transitioned to
Terminating it no longer receives new requests. In a serving scenario, the grace
period is important for reliability because it allows the Pod to finish any active
requests that it may be in the middle of processing before it is terminated.

It’s important to note that when you delete a Pod, any data stored in the containers
associated with that Pod will be deleted as well. If you want to persist data across mul‐
tiple instances of a Pod, you need to use PersistentVolumes, described at the end of
this chapter.

Accessing Your Pod
Now that your Pod is running, you’re going to want to access it for a variety of rea‐
sons. You may want to load the web service that is running in the Pod. You may want
to view its logs to debug a problem that you are seeing, or even execute other com‐
mands in the context of the Pod to help debug. The following sections detail various
ways that you can interact with the code and data running inside your Pod.

Accessing Your Pod | 11

Using Port Forwarding
Later in the book, we’ll show how to expose a service to the world or other containers
using load balancers, but oftentimes you simply want to access a specific Pod, even if
it’s not serving traffic on the internet.

To achieve this, you can use the port-forwarding support built into the Kubernetes
API and command-line tools.

When you run:

$ kubectl port-forward kuard 8080:8080

a secure tunnel is created from your local machine, through the Kubernetes master, to
the instance of the Pod running on one of the worker nodes.

As long as the port-forward command is still running, you can access the Pod (in this
case the kuard web interface) on http://localhost:8080.

Getting More Info with Logs
When your application needs debugging, it’s helpful to be able to dig deeper than
describe to understand what the application is doing. Kubernetes provides two com‐
mands for debugging running containers. The kubectl logs command downloads
the current logs from the running instance:

$ kubectl logs kuard

Adding the -f flag will cause you to continuously stream logs.

The kubectl logs command always tries to get logs from the currently running con‐
tainer. Adding the --previous flag will get logs from a previous instance of the con‐
tainer. This is useful, for example, if your containers are continuously restarting due
to a problem at container startup.

While using kubectl logs is useful for one-off debugging of con‐
tainers in production environments, it’s generally useful to use a log
aggregation service. There are several open source log aggregation
tools, like fluentd and elasticsearch, as well as numerous cloud
logging providers. Log aggregation services provide greater
capacity for storing a longer duration of logs, as well as rich log
searching and filtering capabilities. Finally, they often provide the
ability to aggregate logs from multiple Pods into a single view.

Running Commands in Your Container with exec
Sometimes logs are insufficient, and to truly determine what’s going on you need to
execute commands in the context of the container itself. To do this you can use:

12 | Chapter 5: Pods

http://localhost:8080

$ kubectl exec kuard date

You can also get an interactive session by adding the -it flags:

$ kubectl exec -it kuard ash

Copying Files to and from Containers
At times you may need to copy files from a remote container to a local machine for
more in-depth exploration. For example, you can use a tool like Wireshark to visual‐
ize tcpdump packet captures. Suppose you had a file called /captures/capture3.txt
inside a container in your Pod. You could securely copy that file to your local
machine by running:

$ kubectl cp <pod-name>:/captures/capture3.txt ./capture3.txt

Other times you may need to copy files from your local machine into a container.
Let’s say you want to copy $HOME/config.txt to a remote container. In this case, you
can run:

$ kubectl cp $HOME/config.txt <pod-name>:/config.txt

Generally speaking, copying files into a container is an antipattern. You really should
treat the contents of a container as immutable. But occasionally it’s the most immedi‐
ate way to stop the bleeding and restore your service to health, since it is quicker than
building, pushing, and rolling out a new image. Once the bleeding is stopped, how‐
ever, it is critically important that you immediately go and do the image build and
rollout, or you are guaranteed to forget the local change that you made to your con‐
tainer and overwrite it in the subsequent regularly scheduled rollout.

Health Checks
When you run your application as a container in Kubernetes, it is automatically kept
alive for you using a process health check. This health check simply ensures that the
main process of your application is always running. If it isn’t, Kubernetes restarts it.

However, in most cases, a simple process check is insufficient. For example, if your
process has deadlocked and is unable to serve requests, a process health check will
still believe that your application is healthy since its process is still running.

To address this, Kubernetes introduced health checks for application liveness.
Liveness health checks run application-specific logic (e.g., loading a web page) to ver‐
ify that the application is not just still running, but is functioning properly. Since
these liveness health checks are application-specific, you have to define them in your
Pod manifest.

Health Checks | 13

Liveness Probe
Once the kuard process is up and running, we need a way to confirm that it is
actually healthy and shouldn’t be restarted. Liveness probes are defined per container,
which means each container inside a Pod is health-checked separately. In
Example 5-2, we add a liveness probe to our kuard container, which runs an HTTP
request against the /healthy path on our container.

Example 5-2. kuard-pod-health.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 livenessProbe:
 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

The preceding Pod manifest uses an httpGet probe to perform an HTTP GET request
against the /healthy endpoint on port 8080 of the kuard container. The probe sets an
initialDelaySeconds of 5, and thus will not be called until five seconds after all the
containers in the Pod are created. The probe must respond within the one-second
timeout, and the HTTP status code must be equal to or greater than 200 and less than
400 to be considered successful. Kubernetes will call the probe every 10 seconds. If
more than three probes fail, the container will fail and restart.

You can see this in action by looking at the kuard status page. Create a Pod using this
manifest and then port-forward to that Pod:

$ kubectl apply -f kuard-pod-health.yaml
$ kubectl port-forward kuard 8080:8080

Point your browser to http://localhost:8080. Click the “Liveness Probe” tab. You
should see a table that lists all of the probes that this instance of kuard has received. If
you click the “fail” link on that page, kuard will start to fail health checks. Wait long

14 | Chapter 5: Pods

http://localhost:8080

enough and Kubernetes will restart the container. At that point the display will reset
and start over again. Details of the restart can be found with kubectl describe
kuard. The “Events” section will have text similar to the following:

Killing container with id docker://2ac946...:pod "kuard_default(9ee84...)"
container "kuard" is unhealthy, it will be killed and re-created.

Readiness Probe
Of course, liveness isn’t the only kind of health check we want to perform. Kubernetes
makes a distinction between liveness and readiness. Liveness determines if an applica‐
tion is running properly. Containers that fail liveness checks are restarted. Readiness
describes when a container is ready to serve user requests. Containers that fail readi‐
ness checks are removed from service load balancers. Readiness probes are config‐
ured similarly to liveness probes. We explore Kubernetes services in detail in
Chapter 7.

Combining the readiness and liveness probes helps ensure only healthy containers
are running within the cluster.

Types of Health Checks
In addition to HTTP checks, Kubernetes also supports tcpSocket health checks that
open a TCP socket; if the connection is successful, the probe succeeds. This style of
probe is useful for non-HTTP applications; for example, databases or other non–
HTTP-based APIs.

Finally, Kubernetes allows exec probes. These execute a script or program in the con‐
text of the container. Following typical convention, if this script returns a zero exit
code, the probe succeeds; otherwise, it fails. exec scripts are often useful for custom
application validation logic that doesn’t fit neatly into an HTTP call.

Resource Management
Most people move into containers and orchestrators like Kubernetes because of the
radical improvements in image packaging and reliable deployment they provide. In
addition to application-oriented primitives that simplify distributed system develop‐
ment, equally important is the ability to increase the overall utilization of the com‐
pute nodes that make up the cluster. The basic cost of operating a machine, either
virtual or physical, is basically constant regardless of whether it is idle or fully loaded.
Consequently, ensuring that these machines are maximally active increases the effi‐
ciency of every dollar spent on infrastructure.

Generally speaking, we measure this efficiency with the utilization metric. Utilization
is defined as the amount of a resource actively being used divided by the amount of a

Resource Management | 15

resource that has been purchased. For example, if you purchase a one-core machine,
and your application uses one-tenth of a core, then your utilization is 10%.

With scheduling systems like Kubernetes managing resource packing, you can drive
your utilization to greater than 50%.

To achieve this, you have to tell Kubernetes about the resources your application
requires, so that Kubernetes can find the optimal packing of containers onto pur‐
chased machines.

Kubernetes allows users to specify two different resource metrics. Resource requests
specify the minimum amount of a resource required to run the application. Resource
limits specify the maximum amount of a resource that an application can consume.
Both of these resource definitions are described in greater detail in the following sec‐
tions.

Resource Requests: Minimum Required Resources
With Kubernetes, a Pod requests the resources required to run its containers. Kuber‐
netes guarantees that these resources are available to the Pod. The most commonly
requested resources are CPU and memory, but Kubernetes has support for other
resource types as well, such as GPUs and more.

For example, to request that the kuard container lands on a machine with half a CPU
free and gets 128 MB of memory allocated to it, we define the Pod as shown in
Example 5-3.

Example 5-3. kuard-pod-resreq.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

16 | Chapter 5: Pods

Resources are requested per container, not per Pod. The total
resources requested by the Pod is the sum of all resources reques‐
ted by all containers in the Pod. The reason for this is that in many
cases the different containers have very different CPU require‐
ments. For example, in the web server and data synchronizer Pod,
the web server is user-facing and likely needs a great deal of CPU,
while the data synchronizer can make do with very little.

Request limit details
Requests are used when scheduling Pods to nodes. The Kubernetes scheduler will
ensure that the sum of all requests of all Pods on a node does not exceed the capacity
of the node. Therefore, a Pod is guaranteed to have at least the requested resources
when running on the node. Importantly, “request” specifies a minimum. It does not
specify a maximum cap on the resources a Pod may use. To explore what this means,
let’s look at an example.

Imagine that we have container whose code attempts to use all available CPU cores.
Suppose that we create a Pod with this container that requests 0.5 CPU. Kubernetes
schedules this Pod onto a machine with a total of 2 CPU cores.

As long as it is the only Pod on the machine, it will consume all 2.0 of the available
cores, despite only requesting 0.5 CPU.

If a second Pod with the same container and the same request of 0.5 CPU lands on
the machine, then each Pod will receive 1.0 cores.

If a third identical Pod is scheduled, each Pod will receive 0.66 cores. Finally, if a
fourth identical Pod is scheduled, each Pod will receive the 0.5 core it requested, and
the node will be at capacity.

CPU requests are implemented using the cpu-shares functionality in the Linux ker‐
nel.

Memory requests are handled similarly to CPU, but there is an
important difference. If a container is over its memory request, the
OS can’t just remove memory from the process, because it’s been
allocated. Consequently, when the system runs out of memory, the
kubelet terminates containers whose memory usage is greater
than their requested memory. These containers are automatically
restarted, but with less available memory on the machine for the
container to consume.

Since resource requests guarantee resource availability to a Pod, they are critical to
ensuring that containers have sufficient resources in high-load situations.

Resource Management | 17

Capping Resource Usage with Limits
In addition to setting the resources required by a Pod, which establishes the mini‐
mum resources available to the Pod, you can also set a maximum on a Pod’s resource
usage via resource limits.

In our previous example we created a kuard Pod that requested a minimum of 0.5 of
a core and 128 MB of memory. In the Pod manifest in Example 5-4, we extend this
configuration to add a limit of 1.0 CPU and 256 MB of memory.

Example 5-4. kuard-pod-reslim.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 limits:
 cpu: "1000m"
 memory: "256Mi"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

When you establish limits on a container, the kernel is configured to ensure that con‐
sumption cannot exceed these limits. A container with a CPU limit of 0.5 cores will
only ever get 0.5 cores, even if the CPU is otherwise idle. A container with a memory
limit of 256 MB will not be allowed additional memory (e.g., malloc will fail) if its
memory usage exceeds 256 MB.

Persisting Data with Volumes
When a Pod is deleted or a container restarts, any and all data in the container’s file‐
system is also deleted. This is often a good thing, since you don’t want to leave around
cruft that happened to be written by your stateless web application. In other cases,
having access to persistent disk is an important part of a healthy application. Kuber‐
netes models such persistent storage.

18 | Chapter 5: Pods

Using Volumes with Pods
To add a volume to a Pod manifest, there are two new stanzas to add to our configu‐
ration. The first is a new spec.volumes section. This array defines all of the volumes
that may be accessed by containers in the Pod manifest. It’s important to note that not
all containers are required to mount all volumes defined in the Pod. The second addi‐
tion is the volumeMounts array in the container definition. This array defines the vol‐
umes that are mounted into a particular container, and the path where each volume
should be mounted. Note that two different containers in a Pod can mount the same
volume at different mount paths.

The manifest in Example 5-5 defines a single new volume named kuard-data, which
the kuard container mounts to the /data path.

Example 5-5. kuard-pod-vol.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 volumes:
 - name: "kuard-data"
 hostPath:
 path: "/var/lib/kuard"
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 volumeMounts:
 - mountPath: "/data"
 name: "kuard-data"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Different Ways of Using Volumes with Pods
There are a variety of ways you can use data in your application. The following are a
few, and the recommended patterns for Kubernetes.

Communication/synchronization
In the first example of a Pod, we saw how two containers used a shared volume to
serve a site while keeping it synchronized to a remote Git location. To achieve this,
the Pod uses an emptyDir volume. Such a volume is scoped to the Pod’s lifespan, but
it can be shared between two containers, forming the basis for communication
between our Git sync and web serving containers.

Persisting Data with Volumes | 19

Cache
An application may use a volume that is valuable for performance, but not required
for correct operation of the application. For example, perhaps the application keeps
prerendered thumbnails of larger images. Of course, they can be reconstructed from
the original images, but that makes serving the thumbnails more expensive. You want
such a cache to survive a container restart due to a health check failure, and thus
emptyDir works well for the cache use case as well.

Persistent data
Sometimes you will use a volume for truly persistent data—data that is independent
of the lifespan of a particular Pod, and should move between nodes in the cluster if a
node fails or a Pod moves to a different machine for some reason. To achieve this,
Kubernetes supports a wide variety of remote network storage volumes, including
widely supported protocols like NFS or iSCSI as well as cloud provider network stor‐
age like Amazon’s Elastic Block Store, Azure’s Files and Disk Storage, as well as Goo‐
gle’s Persistent Disk.

Mounting the host filesystem
Other applications don’t actually need a persistent volume, but they do need some
access to the underlying host filesystem. For example, they may need access to
the /dev filesystem in order to perform raw block-level access to a device on the sys‐
tem. For these cases, Kubernetes supports the hostDir volume, which can mount
arbitrary locations on the worker node into the container.

The previous example uses the hostDir volume type. The volume created is /var/lib/
kuard on the host.

Persisting Data Using Remote Disks
Oftentimes, you want the data a Pod is using to stay with the Pod, even if it is restar‐
ted on a different host machine.

To achieve this, you can mount a remote network storage volume into your Pod.
When using network-based storage, Kubernetes automatically mounts and unmounts
the appropriate storage whenever a Pod using that volume is scheduled onto a partic‐
ular machine.

There are numerous methods for mounting volumes over the network. Kubernetes
includes support for standard protocols such as NFS and iSCSI as well as cloud pro‐
vider–based storage APIs for the major cloud providers (both public and private). In
many cases, the cloud providers will also create the disk for you if it doesn’t already
exist.

Here is an example of using an NFS server:

20 | Chapter 5: Pods

...
Rest of pod definition above here
volumes:
 - name: "kuard-data"
 nfs:
 server: my.nfs.server.local
 path: "/exports"

Putting It All Together
Many applications are stateful, and as such we must preserve any data and ensure
access to the underlying storage volume regardless of what machine the application
runs on. As we saw earlier, this can be achieved using a persistent volume backed by
network-attached storage. We also want to ensure a healthy instance of the applica‐
tion is running at all times, which means we want to make sure the container running
kuard is ready before we expose it to clients.

Through a combination of persistent volumes, readiness and liveness probes, and
resource restrictions Kubernetes provides everything needed to run stateful applica‐
tions reliably. Example 5-6 pulls this all together into one manifest.

Example 5-6. kuard-pod-full.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 volumes:
 - name: "kuard-data"
 nfs:
 server: my.nfs.server.local
 path: "/exports"
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 name: kuard
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 limits:
 cpu: "1000m"
 memory: "256Mi"
 volumeMounts:
 - mountPath: "/data"

Putting It All Together | 21

 name: "kuard-data"
 livenessProbe:
 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 initialDelaySeconds: 30
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3

Persistent volumes are a deep topic that has many different details: in particular, the
manner in which persistent volumes, persistent volume claims, and dynamic volume
provisioning work together. There is a more in-depth examination of the subject in
Chapter 13.

Summary
Pods represent the atomic unit of work in a Kubernetes cluster. Pods are comprised of
one or more containers working together symbiotically. To create a Pod, you write a
Pod manifest and submit it to the Kubernetes API server by using the command-line
tool or (less frequently) by making HTTP and JSON calls to the server directly.

Once you’ve submitted the manifest to the API server, the Kubernetes scheduler finds
a machine where the Pod can fit and schedules the Pod to that machine. Once sched‐
uled, the kubelet daemon on that machine is responsible for creating the containers
that correspond to the Pod, as well as performing any health checks defined in the
Pod manifested.

Once a Pod is scheduled to a node, no rescheduling occurs if that node fails. Addi‐
tionally, to create multiple replicas of the same Pod you have to create and name them
manually. In a later chapter we introduce the ReplicaSet object and show how you
can automate the creation of multiple identical Pods and ensure that they are recre‐
ated in the event of a node machine failure.

22 | Chapter 5: Pods

CHAPTER 6

Labels and Annotations

Kubernetes was made to grow with you as your application scales both in size and
complexity. With this in mind, labels and annotations were added as foundational
concepts. Labels and annotations let you work in sets of things that map to how you
think about your application. You can organize, mark, and cross-index all of your
resources to represent the groups that make the most sense for your application.

Labels are key/value pairs that can be attached to Kubernetes objects such as Pods and
ReplicaSets. They can be arbitrary, and are useful for attaching identifying informa‐
tion to Kubernetes objects. Labels provide the foundation for grouping objects.

Annotations, on the other hand, provide a storage mechanism that resembles labels:
annotations are key/value pairs designed to hold nonidentifying information that can
be leveraged by tools and libraries.

Labels
Labels provide identifying metadata for objects. These are fundamental qualities of
the object that will be used for grouping, viewing, and operating.

23

The motivations for labels grew out of Google’s experience in run‐
ning large and complex applications. There were a couple of les‐
sons that emerged from this experience. See the great Site
Reliability Engineering by Betsy Beyer et al. (O’Reilly) for some
deeper background on how Google approaches production sys‐
tems.
The first lesson is that production abhors a singleton. When
deploying software, users will often start with a single instance.
However, as the application matures, these singletons often multi‐
ply and become sets of objects. With this in mind, Kubernetes uses
labels to deal with sets of objects instead of single instances.
The second lesson is that any hierarchy imposed by the system will
fall short for many users. In addition, user grouping and hierarchy
are subject to change over time. For instance, a user may start out
with the idea that all apps are made up of many services. However,
over time, a service may be shared across multiple apps. Kuber‐
netes labels are flexible enough to adapt to these situations and
more.

Labels have simple syntax. They are key/value pairs where both the key and value are
represented by strings. Label keys can be broken down into two parts: an optional
prefix and a name, separated by a slash. The prefix, if specified, must be a DNS sub‐
domain with a 253-character limit. The key name is required and must be shorter
than 63 characters. Names must also start and end with an alphanumeric character
and permit the use of dashes (-), underscores (_), and dots (.) between characters.

Label values are strings with a maximum length of 63 characters. The contents of the
label values follow the same rules as for label keys.

Table 6-1 shows valid label keys and values.

Table 6-1. Label examples

Key Value

acme.com/app-version 1.0.0

appVersion 1.0.0

app.version 1.0.0

kubernetes.io/cluster-service true

Applying Labels
Here we create a few deployments (a way to create an array of Pods) with some inter‐
esting labels. We’ll take two apps (called alpaca and bandicoot) and have two envi‐
ronments for each. We will also have two different versions.

24 | Chapter 6: Labels and Annotations

http://shop.oreilly.com/product/0636920041528.do
http://shop.oreilly.com/product/0636920041528.do

1. First, create the alpaca-prod deployment and set the ver, app, and env labels:
$ kubectl run alpaca-prod \
 --image=gcr.io/kuar-demo/kuard-amd64:1 \
 --replicas=2 \
 --labels="ver=1,app=alpaca,env=prod"

2. Next, create the alpaca-test deployment and set the ver, app, and env labels
with the appropriate values:

$ kubectl run alpaca-test \
 --image=gcr.io/kuar-demo/kuard-amd64:2 \
 --replicas=1 \
 --labels="ver=2,app=alpaca,env=test"

3. Finally, create two deployments for bandicoot. Here we name the environments
prod and staging:

$ kubectl run bandicoot-prod \
 --image=gcr.io/kuar-demo/kuard-amd64:2 \
 --replicas=2 \
 --labels="ver=2,app=bandicoot,env=prod"
$ kubectl run bandicoot-staging \
 --image=gcr.io/kuar-demo/kuard-amd64:2 \
 --replicas=1 \
 --labels="ver=2,app=bandicoot,env=staging"

At this point you should have four deployments—alpaca-prod, alpaca-staging,
bandicoot-prod, and bandicoot-staging:

$ kubectl get deployments --show-labels

NAME ... LABELS
alpaca-prod ... app=alpaca,env=prod,ver=1
alpaca-test ... app=alpaca,env=test,ver=2
bandicoot-prod ... app=bandicoot,env=prod,ver=2
bandicoot-staging ... app=bandicoot,env=staging,ver=2

We can visualize this as a Venn diagram based on the labels (Figure 6-1).

Labels | 25

Figure 6-1. Visualization of labels applied to our deployments

Modifying Labels
Labels can also be applied (or updated) on objects after they are created.

$ kubectl label deployments alpaca-test "canary=true"

There is a caveat to be aware of here. In this example, the kubectl
label command will only change the label on the deployment
itself; it won’t affect the objects (ReplicaSets and Pods) the deploy‐
ment creates. To change those, you’ll need to change the template
embedded in the deployment (see Chapter 6).

You can also use the -L option to kubectl get to show a label value as a column:

$ kubectl get deployments -L canary

NAME DESIRED CURRENT ... CANARY
alpaca-prod 2 2 ... <none>
alpaca-test 1 1 ... true
bandicoot-prod 2 2 ... <none>
bandicoot-staging 1 1 ... <none>

You can remove a label by applying a dash suffix:

$ kubectl label deployments alpaca-test "canary-"

Label Selectors
Label selectors are used to filter Kubernetes objects based on a set of labels. Selectors
use a simple Boolean language. They are used both by end users (via tools like
kubectl) and by different types of objects (such as how ReplicaSet relates to its Pods).

26 | Chapter 6: Labels and Annotations

Each deployment (via a ReplicaSet) creates a set of Pods using the labels specified in
the template embedded in the deployment. This is configured by the kubectl run
command.

Running the kubectl get pods command should return all the Pods currently run‐
ning in the cluster. We should have a total of six kuard Pods across our three environ‐
ments:

$ kubectl get pods --show-labels

NAME ... LABELS
alpaca-prod-3408831585-4nzfb ... app=alpaca,env=prod,ver=1,...
alpaca-prod-3408831585-kga0a ... app=alpaca,env=prod,ver=1,...
alpaca-test-1004512375-3r1m5 ... app=alpaca,env=test,ver=2,...
bandicoot-prod-373860099-0t1gp ... app=bandicoot,env=prod,ver=2,...
bandicoot-prod-373860099-k2wcf ... app=bandicoot,env=prod,ver=2,...
bandicoot-staging-1839769971-3ndv ... app=bandicoot,env=staging,ver=2,...

You may see a new label that we haven’t seen yet: pod-template-
hash. This label is applied by the deployment so it can keep track of
which pods were generated from which template versions. This
allows the deployment to manage updates in a clean way, as will be
covered in depth in Chapter 12.

If we only wanted to list pods that had the ver label set to 2 we could use the
--selector flag:

$ kubectl get pods --selector="ver=2"

NAME READY STATUS RESTARTS AGE
alpaca-test-1004512375-3r1m5 1/1 Running 0 3m
bandicoot-prod-373860099-0t1gp 1/1 Running 0 3m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 3m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 3m

If we specify two selectors separated by a comma, only the objects that satisfy both
will be returned. This is a logical AND operation:

$ kubectl get pods --selector="app=bandicoot,ver=2"

NAME READY STATUS RESTARTS AGE
bandicoot-prod-373860099-0t1gp 1/1 Running 0 4m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 4m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 4m

We can also ask if a label is one of a set of values. Here we ask for all pods where the
app label is set to alpaca or bandicoot (which will be all six pods):

$ kubectl get pods --selector="app in (alpaca,bandicoot)"

Labels | 27

NAME READY STATUS RESTARTS AGE
alpaca-prod-3408831585-4nzfb 1/1 Running 0 6m
alpaca-prod-3408831585-kga0a 1/1 Running 0 6m
alpaca-test-1004512375-3r1m5 1/1 Running 0 6m
bandicoot-prod-373860099-0t1gp 1/1 Running 0 6m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 6m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 6m

Finally, we can ask if a label is set at all. Here we are asking for all of the deployments
with the canary label set to anything:

$ kubectl get deployments --selector="canary"

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
alpaca-test 1 1 1 1 7m

There are also “negative” versions of each of these, as shown in Table 6-2.

Table 6-2. Selector operators

Operator Description

key=value key is set to value

key!=value key is not set to value

key in (value1, value2) key is one of value1 or value2

key notin (value1, value2) key is not one of value1 or value2

key key is set

!key key is not set

Label Selectors in API Objects
When a Kubernetes object refers to a set of other Kubernetes objects, a label selector
is used. Instead of a simple string as described in the previous section, a parsed struc‐
ture is used.

For historical reasons (Kubernetes doesn’t break API compatibility!), there are two
forms. Most objects support a newer, more powerful set of selector operators.

A selector of app=alpaca,ver in (1, 2) would be converted to this:

selector:
 matchLabels:
 app: alpaca
 matchExpressions:
 - {key: ver, operator: In, values: [1, 2]}

Compact YAML syntax. This is an item in a list (matchExpressions) that is a
map with three entries. The last entry (values) has a value that is a list with two
items.

28 | Chapter 6: Labels and Annotations

All of the terms are evaluated as a logical AND. The only way to represent the !=
operator is to convert it to a NotIn expression with a single value.

The older form of specifying selectors (used in ReplicationControllers and serv‐
ices) only supports the = operator. This is a simple set of key/value pairs that must all
match a target object to be selected.

The selector app=alpaca,ver=1 would be represented like this:

selector:
 app: alpaca
 ver: 1

Annotations
Annotations provide a place to store additional metadata for Kubernetes objects with
the sole purpose of assisting tools and libraries. They are a way for other programs
driving Kubernetes via an API to store some opaque data with an object. Annotations
can be used for the tool itself or to pass configuration information between external
systems.

While labels are used to identify and group objects, annotations are used to provide
extra information about where an object came from, how to use it, or policy around
that object. There is overlap, and it is a matter of taste as to when to use an annotation
or a label. When in doubt, add information to an object as an annotation and pro‐
mote it to a label if you find yourself wanting to use it in a selector.

Annotations are used to:

• Keep track of a “reason” for the latest update to an object.
• Communicate a specialized scheduling policy to a specialized scheduler.
• Extend data about the last tool to update the resource and how it was updated

(used for detecting changes by other tools and doing a smart merge).
• Build, release, or image information that isn’t appropriate for labels (may include

a Git hash, timestamp, PR number, etc.).
• Enable the Deployment object (Chapter 12) to keep track of ReplicaSets that it is

managing for rollouts.
• Provide extra data to enhance the visual quality or usability of a UI. For example,

objects could include a link to an icon (or a base64-encoded version of an icon).
• Prototype alpha functionality in Kubernetes (instead of creating a first-class API

field, the parameters for that functionality are instead encoded in an annotation).

Annotations are used in various places in Kubernetes, with the primary use case
being rolling deployments. During rolling deployments, annotations are used to track

Annotations | 29

rollout status and provide the necessary information required to roll back a deploy‐
ment to a previous state.

Users should avoid using the Kubernetes API server as a general-purpose database.
Annotations are good for small bits of data that are highly associated with a specific
resource. If you want to store data in Kubernetes but you don’t have an obvious object
to associate it with, consider storing that data in some other, more appropriate data‐
base.

Defining Annotations
Annotation keys use the same format as label keys. However, because they are often
used to communicate information between tools, the “namespace” part of the key is
more important. Example keys include deployment.kubernetes.io/revision or
kubernetes.io/change-cause.

The value component of an annotation is a free-form string field. While this allows
maximum flexibility as users can store arbitrary data, because this is arbitrary text,
there is no validation of any format. For example, it is not uncommon for a JSON
document to be encoded as a string and stored in an annotation. It is important to
note that the Kubernetes server has no knowledge of the required format of annota‐
tion values. If annotations are used to pass or store data, there is no guarantee the
data is valid. This can make tracking down errors more difficult.

Annotations are defined in the common metadata section in every Kubernetes
object:

...
metadata:
 annotations:
 example.com/icon-url: "https://example.com/icon.png"
...

Annotations are very convenient and provide powerful loose coupling. However, they
should be used judiciously to avoid an untyped mess of data.

Cleanup
It is easy to clean up all of the deployments that we started in this chapter:

$ kubectl delete deployments --all

If you want to be more selective you can use the --selector flag to choose which
deployments to delete.

30 | Chapter 6: Labels and Annotations

Summary
Labels are used to identify and optionally group objects in a Kubernetes cluster.
Labels are also used in selector queries to provide flexible runtime grouping of objects
such as pods.

Annotations provide object-scoped key/value storage of metadata that can be used by
automation tooling and client libraries. Annotations can also be used to hold configu‐
ration data for external tools such as third-party schedulers and monitoring tools.

Labels and annotations are key to understanding how key components in a Kuber‐
netes cluster work together to ensure the desired cluster state. Using labels and anno‐
tations properly unlocks the true power of Kubernetes’s flexibility and provides the
starting point for building automation tools and deployment workflows.

Summary | 31

CHAPTER 7

Service Discovery

Kubernetes is a very dynamic system. The system is involved in placing Pods on
nodes, making sure they are up and running, and rescheduling them as needed.
There are ways to automatically change the number of pods based on load (such as
horizontal pod autoscaling, discussed in Chapter 8). The API-driven nature of the
system encourages others to create higher and higher levels of automation.

While the dynamic nature of Kubernetes makes it easy to run a lot of things, it creates
problems when it comes to finding those things. Most of the traditional network
infrastructure wasn’t built for the level of dynamism that Kubernetes presents.

What Is Service Discovery?
The general name for this class of problems and solutions is service discovery. Service
discovery tools help solve the problem of finding which processes are listening at
which addresses for which services. A good service discovery system will enable users
to resolve this information quickly and reliably. A good system is also low-latency;
clients are updated soon after the information associated with a service changes.
Finally, a good service discovery system can store a richer definition of what that ser‐
vice is. For example, perhaps there are multiple ports associated with the service.

The Domain Name System (DNS) is the traditional system of service discovery on
the internet. DNS is designed for relatively stable name resolution with wide and effi‐
cient caching. It is a great system for the internet but falls short in the dynamic world
of Kubernetes.

Unfortunately, many systems (for example, Java, by default) look up a name in DNS
directly and never re-resolve. This can lead to clients caching stale mappings and
talking to the wrong IP. Even with short TTLs and well-behaved clients, there is a nat‐
ural delay between when a name resolution changes and the client notices. There are

33

natural limits to the amount and type of information that can be returned in a typical
DNS query, too. Things start to break past 20–30 A records for a single name. SRV
records solve some problems but are often very hard to use. Finally, the way that cli‐
ents handle multiple IPs in a DNS record is usually to take the first IP address and
rely on the DNS server to randomize or round-robin the order of records. This is no
substitute for more purpose-built load balancing.

The Service Object
Real service discovery in Kubernetes starts with a Service object.

A Service object is a way to create a named label selector. As we will see, the Ser
vice object does some other nice things for us too.

Just as the kubectl run command is an easy way to create a Kubernetes deployment,
we can use kubectl expose to create a service. Let’s create some deployments and
services so we can see how they work:

$ kubectl run alpaca-prod \
 --image=gcr.io/kuar-demo/kuard-amd64:1 \
 --replicas=3 \
 --port=8080 \
 --labels="ver=1,app=alpaca,env=prod"
$ kubectl expose deployment alpaca-prod
$ kubectl run bandicoot-prod \
 --image=gcr.io/kuar-demo/kuard-amd64:2 \
 --replicas=2 \
 --port=8080 \
 --labels="ver=2,app=bandicoot,env=prod"
$ kubectl expose deployment bandicoot-prod
$ kubectl get services -o wide

NAME CLUSTER-IP ... PORT(S) ... SELECTOR
alpaca-prod 10.115.245.13 ... 8080/TCP ... app=alpaca,env=prod,ver=1
bandicoot-prod 10.115.242.3 ... 8080/TCP ... app=bandicoot,env=prod,ver=2
kubernetes 10.115.240.1 ... 443/TCP ... <none>

After running these commands, we have three services. The ones we just created are
alpaca-prod and bandicoot-prod. The kubernetes service is automatically created
for you so that you can find and talk to the Kubernetes API from within the app.

If we look at the SELECTOR column, we see that the alpaca-prod service simply gives a
name to a selector and specifies which ports to talk to for that service. The kubectl
expose command will conveniently pull both the label selector and the relevant ports
(8080, in this case) from the deployment definition.

34 | Chapter 7: Service Discovery

Furthermore, that service is assigned a new type of virtual IP called a cluster IP. This
is a special IP address the system will load-balance across all of the pods that are iden‐
tified by the selector.

To interact with services, we are going to port-forward to one of the alpaca pods.
Start and leave this command running in a terminal window. You can see the port
forward working by accessing the alpaca pod at http://localhost:48858:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca \
 -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $ALPACA_POD 48858:8080

Service DNS
Because the cluster IP is virtual it is stable and it is appropriate to give it a DNS
address. All of the issues around clients caching DNS results no longer apply. Within
a namespace, it is as easy as just using the service name to connect to one of the pods
identified by a service.

Kubernetes provides a DNS service exposed to Pods running in the cluster. This
Kubernetes DNS service was installed as a system component when the cluster was
first created. The DNS service is, itself, managed by Kubernetes and is a great exam‐
ple of Kubernetes building on Kubernetes. The Kubernetes DNS service provides
DNS names for cluster IPs.

You can try this out by expanding the “DNS Resolver” section on the kuard server
status page. Query the A record for alpaca-prod. The output should look something
like this:

;; opcode: QUERY, status: NOERROR, id: 12071
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;alpaca-prod.default.svc.cluster.local. IN A

;; ANSWER SECTION:
alpaca-prod.default.svc.cluster.local. 30 IN A 10.115.245.13

The full DNS name here is alpaca-prod.default.svc.cluster.local.. Let’s break
this down:

alpaca-prod

The name of the service in question.

default

The namespace that this service is in.

The Service Object | 35

http://localhost:48858

svc:: Recognizing that this is a service. This allows Kubernetes to expose other types of
things as DNS in the future. cluster.local.

The base domain name for the cluster. This is the default and what you will see
for most clusters. Administrators may change this to allow unique DNS names
across multiple clusters.

When referring to a service in your own namespace you can just use the service name
(alpaca-prod). You can also refer to a service in another namespace with alpaca-
prod.default. And, of course, you can use the fully qualified service name (alpaca-
prod.default.svc.cluster.local.). Try each of these out in the “DNS Resolver”
section of kuard.

Readiness Checks
Oftentimes when an application first starts up it isn’t ready to handle requests. There
is usually some amount of initialization that can take anywhere from under a second
to several minutes. One nice thing the Service object does is track which of your
pods are ready via a readiness check. Let’s modify our deployment to add a readiness
check:

$ kubectl edit deployment/alpaca-prod

This command will fetch the current version of the alpaca-prod deployment and
bring it up in an editor. After you save and quit your editor, it’ll then write the object
back to Kubernetes. This is a quick way to edit an object without saving it to a YAML
file.

Add the following section:

spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 name: alpaca-prod
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 periodSeconds: 2
 initialDelaySeconds: 0
 failureThreshold: 3
 successThreshold: 1

This sets up the pods this deployment will create so that they will be checked for
readiness via an HTTP GET to /ready on port 8080. This check is done every 2 sec‐
onds starting as soon as the pod comes up. If three successive checks fail, then the

36 | Chapter 7: Service Discovery

pod will be considered not ready. However, if only one check succeeds, then the pod
will again be considered ready.

Only ready pods are sent traffic.

Updating the deployment definition like this will delete and recreate the alpaca pods.
As such, we need to restart our port-forward command from earlier:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca \
 -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $ALPACA_POD 48858:8080

Open your browser to http://localhost:48858 and you should see the debug page for
that instance of kuard. Expand the “Readiness Check” section. You should see this
page update every time there is a new readiness check from the system, which should
happen every 2 seconds.

In another terminal window, start a watch command on the endpoints for the
alpaca-prod service. Endpoints are a lower-level way of finding what a service is
sending traffic to and are covered later in this chapter. The --watch option here
causes the kubectl command to hang around and output any updates. This is an easy
way to see how a Kubernetes object changes over time:

$ kubectl get endpoints alpaca-prod --watch

Now go back to your browser and hit the “Fail” link for the readiness check. You
should see that the server is not returning 500s. After three of these this server is
removed from the list of endpoints for the service. Hit the “Succeed” link and notice
that after a single readiness check the endpoint is added back.

This readiness check is a way for an overloaded or sick server to signal to the system
that it doesn’t want to receive traffic anymore. This is a great way to implement grace‐
ful shutdown. The server can signal that it no longer wants traffic, wait until existing
connections are closed, and then cleanly exit.

Press Control-C to exit out of both the port-forward and watch commands in your
terminals.

Looking Beyond the Cluster
So far, everything we’ve covered in this chapter has been about exposing services
inside of a cluster. Oftentimes the IPs for pods are only reachable from within the
cluster. At some point, we have to allow new traffic in!

The most portable way to do this is to use a feature called NodePorts, which enhance
a service even further. In addition to a cluster IP, the system picks a port (or the user
can specify one), and every node in the cluster then forwards traffic to that port to
the service.

Looking Beyond the Cluster | 37

http://localhost:48858

With this feature, if you can reach any node in the cluster you can contact a service.
You use the NodePort without knowing where any of the Pods for that service are
running. This can be integrated with hardware or software load balancers to expose
the service further.

Try this out by modifying the alpaca-prod service:

$ kubectl edit service alpaca-prod

Change the spec.type field to NodePort. You can also do this when creating the ser‐
vice via kubectl expose by specifying --type=NodePort. The system will assign a
new NodePort:

$ kubectl describe service alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca
 env=prod
 ver=1
Annotations: <none>
Selector: app=alpaca,env=prod,ver=1
Type: NodePort
IP: 10.115.245.13
Port: <unset> 8080/TCP
NodePort: <unset> 32711/TCP
Endpoints: 10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity: None
No events.

Here we see that the system assigned port 32711 to this service. Now we can hit any
of our cluster nodes on that port to access the service. If you are sitting on the same
network, you can access it directly. If your cluster is in the cloud someplace, you can
use SSH tunneling with something like this:

$ ssh <node> -L 8080:localhost:32711

Now if you open your browser to http://localhost:8080 you will be connected to that
service. Each request that you send to the service will be randomly directed to one of
the Pods that implement the service. Reload the page a few times and you will see that
you are randomly assigned to different pods.

When you are done, exit out of the SSH session.

Cloud Integration
Finally, if you have support from the cloud that you are running on (and your cluster
is configured to take advantage of it) you can use the LoadBalancer type. This builds
on NodePorts by additionally configuring the cloud to create a new load balancer and
direct it at nodes in your cluster.

38 | Chapter 7: Service Discovery

http://localhost:8080

Edit the alpaca-prod service again (kubectl edit service alpaca-prod) and
change spec.type to LoadBalancer.

If you do a kubectl get services right away you’ll see that the EXTERNAL-IP col‐
umn for alpaca-prod now says <pending>. Wait a bit and you should see a public
address assigned by your cloud. You can look in the console for your cloud account
and see the configuration work that Kubernetes did for you:

$ kubectl describe service alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca
 env=prod
 ver=1
Selector: app=alpaca,env=prod,ver=1
Type: LoadBalancer
IP: 10.115.245.13
LoadBalancer Ingress: 104.196.248.204
Port: <unset> 8080/TCP
NodePort: <unset> 32711/TCP
Endpoints: 10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity: None
Events:
 FirstSeen ... Reason Message
 --------- ... ------ -------
 3m ... Type NodePort -> LoadBalancer
 3m ... CreatingLoadBalancer Creating load balancer
 2m ... CreatedLoadBalancer Created load balancer

Here we see that we have an address of 104.196.248.204 now assigned to the alpaca-
prod service. Open up your browser and try!

This example is from a cluster launched and managed on the Google Cloud Platform
via GKE. However, the way a LoadBalancer is configured is specific to a cloud. In
addition, some clouds have DNS-based load balancers (e.g., AWS ELB). In this case
you’ll see a hostname here instead of an IP. Also, depending on the cloud provider, it
may still take a little while for the load balancer to be fully operational.

Advanced Details
Kubernetes is built to be an extensible system. As such, there are layers that allow for
more advanced integrations. Understanding the details of how a sophisticated con‐
cept like services is implemented may help you troubleshoot or create more advanced
integrations. This section goes a bit below the surface.

Advanced Details | 39

Endpoints
Some applications (and the system itself) want to be able to use services without
using a cluster IP. This is done with another type of object called Endpoints. For
every Service object, Kubernetes creates a buddy Endpoints object that contains the
IP addresses for that service:

$ kubectl describe endpoints alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca
 env=prod
 ver=1
Subsets:
 Addresses: 10.112.1.54,10.112.2.84,10.112.2.85
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP

No events.

To use a service, an advanced application can talk to the Kubernetes API directly to
look up endpoints and call them. The Kubernetes API even has the capability to
“watch” objects and be notified as soon as they change. In this way a client can react
immediately as soon as the IPs associated with a service change.

Let’s demonstrate this. In a terminal window, start the following command and leave
it running:

$ kubectl get endpoints alpaca-prod --watch

It will output the current state of the endpoint and then “hang”:

NAME ENDPOINTS AGE
alpaca-prod 10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080 1m

Now open up another terminal window and delete and recreate the deployment back‐
ing alpaca-prod:

$ kubectl delete deployment alpaca-prod
$ kubectl run alpaca-prod \
 --image=gcr.io/kuar-demo/kuard-amd64:1 \
 --replicas=3 \
 --port=8080 \
 --labels="ver=1,app=alpaca,env=prod"

If you look back at the output from the watched endpoint, you will see that as you
deleted and re-created these pods, the output of the command reflected the most up-

40 | Chapter 7: Service Discovery

to-date set of IP addresses associated with the service. Your output will look some‐
thing like this:

NAME ENDPOINTS AGE
alpaca-prod 10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080 1m
alpaca-prod 10.112.1.54:8080,10.112.2.84:8080 1m
alpaca-prod <none> 1m
alpaca-prod 10.112.2.90:8080 1m
alpaca-prod 10.112.1.57:8080,10.112.2.90:8080 1m
alpaca-prod 10.112.0.28:8080,10.112.1.57:8080,10.112.2.90:8080 1m

The Endpoints object is great if you are writing new code that is built to run on
Kubernetes from the start. But most projects aren’t in this position! Most existing sys‐
tems are built to work with regular old IP addresses that don’t change that often.

Manual Service Discovery
Kubernetes services are built on top of label selectors over pods. That means that you
can use the Kubernetes API to do rudimentary service discovery without using a Ser
vice object at all! Let’s demonstrate.

With kubectl (and via the API) we can easily see what IPs are assigned to each pod in
our example deployments:

$ kubectl get pods -o wide --show-labels

NAME ... IP ... LABELS
alpaca-prod-12334-87f8h ... 10.112.1.54 ... app=alpaca,env=prod,ver=1
alpaca-prod-12334-jssmh ... 10.112.2.84 ... app=alpaca,env=prod,ver=1
alpaca-prod-12334-tjp56 ... 10.112.2.85 ... app=alpaca,env=prod,ver=1
bandicoot-prod-5678-sbxzl ... 10.112.1.55 ... app=bandicoot,env=prod,ver=2
bandicoot-prod-5678-x0dh8 ... 10.112.2.86 ... app=bandicoot,env=prod,ver=2

This is great, but what if you have a ton of pods? You’ll probably want to filter this
based on the labels applied as part of the deployment. Let’s do that for just the alpaca
app:

$ kubectl get pods -o wide --selector=app=alpaca,env=prod

NAME ... IP ...
alpaca-prod-3408831585-bpzdz ... 10.112.1.54 ...
alpaca-prod-3408831585-kncwt ... 10.112.2.84 ...
alpaca-prod-3408831585-l9fsq ... 10.112.2.85 ...

At this point we have the basics of service discovery! We can always use labels to
identify the set of pods we are interested in, get all of the pods for those labels, and
dig out the IP address. But keeping the correct set of labels to use in sync can be
tricky. This is why the Service object was created.

Advanced Details | 41

kube-proxy and Cluster IPs
Cluster IPs are stable virtual IPs that load-balance traffic across all of the endpoints in
a service. This magic is performed by a component running on every node in the
cluster called the kube-proxy (Figure 7-1).

Figure 7-1. Configuring and using a cluster IP

In Figure 7-1, the kube-proxy watches for new services in the cluster via the API
server. It then programs a set of iptables rules in the kernel of that host to rewrite
the destination of packets so they are directed at one of the endpoints for that service.
If the set of endpoints for a service changes (due to pods coming and going or due to
a failed readiness check) the set of iptables rules is rewritten.

The cluster IP itself is usually assigned by the API server as the service is created.
However, when creating the service, the user can specify a specific cluster IP. Once
set, the cluster IP cannot be modified without deleting and recreating the Service
object.

The Kubernetes service address range is configured using the
--service-cluster-ip-range flag on the kube-apiserver

binary. The service address range should not overlap with the IP
subnets and ranges assigned to each Docker bridge or Kubernetes
node.
In addition, any explicit cluster IP requested must come from that
range and not already be in use.

Cluster IP Environment Variables
While most users should be using the DNS services to find cluster IPs, there are some
older mechanisms that may still be in use. One of these is injecting a set of environ‐
ment variables into pods as they start up.

To see this in action, let’s look at the console for the bandicoot instance of kuard.
Enter the following commands in your terminal:

42 | Chapter 7: Service Discovery

$ BANDICOOT_POD=$(kubectl get pods -l app=bandicoot \
 -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $BANDICOOT_POD 48858:8080

Now open your browser to http://localhost:48858 to see the status page for this server.
Expand the “Environment” section and note the set of environment variables for the
alpaca service. The status page should show a table similar to Table 7-1.

Table 7-1. Service environment variables

Name Value

ALPACA_PROD_PORT tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP_ADDR 10.115.245.13

ALPACA_PROD_PORT_8080_TCP_PORT 8080

ALPACA_PROD_PORT_8080_TCP_PROTO tcp

ALPACA_PROD_SERVICE_HOST 10.115.245.13

ALPACA_PROD_SERVICE_PORT 8080

The two main environment variables to use are ALPACA_PROD_SERVICE_HOST and
ALPACA_PROD_SERVICE_PORT. The other environment variables are created to be com‐
patible with (now deprecated) Docker link variables.

A problem with the environment variable approach is that it requires resources to be
created in a specific order. The services must be created before the pods that reference
them. This can introduce quite a bit of complexity when deploying a set of services
that make up a larger application. In addition, using just environment variables seems
strange to many users. For this reason, DNS is probably a better option.

Cleanup
Run the following commands to clean up all of the objects created in this chapter:

$ kubectl delete services,deployments -l app

Summary
Kubernetes is a dynamic system that challenges traditional methods of naming and
connecting services over the network. The Service object provides a flexible and
powerful way to expose services both within the cluster and beyond. With the techni‐
ques covered here you can connect services to each other and expose them outside
the cluster.

While using the dynamic service discovery mechanisms in Kubernetes introduces
some new concepts and may, at first, seem complex, understanding and adapting

Cleanup | 43

http://localhost:48858

these techniques is key to unlocking the power of Kubernetes. Once your application
can dynamically find services and react to the dynamic placement of those applica‐
tions, you are free to stop worrying about where things are running and when they
move. It is a critical piece of the puzzle to start to think about services in a logical way
and let Kubernetes take care of the details of container placement.

44 | Chapter 7: Service Discovery

CHAPTER 11

ConfigMaps and Secrets

It is a good practice to make container images as reusable as possible. The same
image should be able to be used for development, staging, and production. It is even
better if the same image is general purpose enough to be used across applications and
services. Testing and versioning get riskier and more complicated if images need to be
recreated for each new environment. But then how do we specialize the use of that
image at runtime?

This is where ConfigMaps and secrets come into play. ConfigMaps are used to pro‐
vide configuration information for workloads. This can either be fine-grained infor‐
mation (a short string) or a composite value in the form of a file. Secrets are similar to
ConfigMaps but focused on making sensitive information available to the workload.
They can be used for things like credentials or TLS certificates.

ConfigMaps
One way to think of a ConfigMap is as a Kubernetes object that defines a small file‐
system. Another way is as a set of variables that can be used when defining the envi‐
ronment or command line for your containers. The key thing is that the ConfigMap
is combined with the Pod right before it is run. This means that the container image
and the pod definition itself can be reused across many apps by just changing the
ConfigMap that is used.

Creating ConfigMaps
Let’s jump right in and create a ConfigMap. Like many objects in Kubernetes, you can
create these in an immediate, imperative way or you can create them from a manifest
on disk. We’ll start with the imperative method.

45

First, suppose we have a file on disk (called my-config.txt) that we want to make avail‐
able to the Pod in question, as shown in Example 11-1.

Example 11-1. my-config.txt

This is a sample config file that I might use to configure an application
parameter1 = value1
parameter2 = value2

Next, let’s create a ConfigMap with that file. We’ll also add a couple of simple key/
value pairs here. These are referred to as literal values on the command line:

$ kubectl create configmap my-config \
 --from-file=my-config.txt \
 --from-literal=extra-param=extra-value \
 --from-literal=another-param=another-value

The equivalent YAML for the ConfigMap object we just created is:

$ kubectl get configmaps my-config -o yaml

apiVersion: v1
data:
 another-param: another-value
 extra-param: extra-value
 my-config.txt: |
 # This is a sample config file that I might use to configure an application
 parameter1 = value1
 parameter2 = value2
kind: ConfigMap
metadata:
 creationTimestamp: ...
 name: my-config
 namespace: default
 resourceVersion: "13556"
 selfLink: /api/v1/namespaces/default/configmaps/my-config
 uid: 3641c553-f7de-11e6-98c9-06135271a273

As you can see, the ConfigMap is really just some key/value pairs stored in an object.
The interesting stuff happens when you try to use a ConfigMap.

Using a ConfigMap
There are three main ways to use a ConfigMap:

Filesystem
You can mount a ConfigMap into a Pod. A file is created for each entry based on
the key name. The contents of that file are set to the value.

46 | Chapter 11: ConfigMaps and Secrets

Environment variable
A ConfigMap can be used to dynamically set the value of an environment vari‐
able.

Command-line argument
Kubernetes supports dynamically creating the command line for a container
based on ConfigMap values.

Let’s create a manifest for kuard that pulls all of these together, as shown in
Example 11-2.

Example 11-2. kuard-config.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard-config
spec:
 containers:
 - name: test-container
 image: gcr.io/kuar-demo/kuard-amd64:1
 imagePullPolicy: Always
 command:
 - "/kuard"
 - "$(EXTRA_PARAM)"
 env:
 - name: ANOTHER_PARAM
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: another-param
 - name: EXTRA_PARAM
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: extra-param
 volumeMounts:
 - name: config-volume
 mountPath: /config
 volumes:
 - name: config-volume
 configMap:
 name: my-config
 restartPolicy: Never

For the filesystem method, we create a new volume inside the pod and give it the
name config-volume. We then define this volume to be a ConfigMap volume and
point at the ConfigMap to mount. We have to specify where this gets mounted into
the kuard container with a volumeMount. In this case we are mounting it at /config.

ConfigMaps | 47

Environment variables are specified with a special valueFrom member. This refer‐
ences the ConfigMap and the data key to use within that ConfigMap.

Command-line arguments build on environment variables. Kubernetes will perform
the correct substitution with a special $(<env-var-name>) syntax.

Run this Pod and let’s port-forward to examine how the app sees the world:

$ kubectl apply -f kuard-config.yaml
$ kubectl port-forward kuard-config 8080

Now point your browser at http://localhost:8080. We can look at how we’ve injected
configuration values into the program in all three ways.

Click on the “Server Env” tab on the left. This will show the command line that the
app was launched with along with its environment, as shown in Figure 11-1.

Figure 11-1. kuard showing its environment

48 | Chapter 11: ConfigMaps and Secrets

http://localhost:8080

Here we can see that we’ve added two environment variables (ANOTHER_PARAM and
EXTRA_PARAM) whose values are set via the ConfigMap. Furthermore, we’ve added an
argument to the command line of kuard based on the EXTRA_PARAM value.

Next, click on the “File system browser” tab (Figure 11-2). This lets you explore the
filesystem as the application sees it. You should see an entry called /config. This is a
volume created based on our ConfigMap. If you navigate into that, you’ll see that a
file has been created for each entry of the ConfigMap. You’ll also see some hidden
files (prepended with ..) that are used to do a clean swap of new values when the Con‐
figMap is updated.

Figure 11-2. The /config directory as seen through kuard

Secrets
While ConfigMaps are great for most configuration data, there is certain data that is
extra-sensitive. This can include passwords, security tokens, or other types of private

Secrets | 49

keys. Collectively, we call this type of data “secrets.” Kubernetes has native support for
storing and handling this data with care.

Secrets enable container images to be created without bundling sensitive data. This
allows containers to remain portable across environments. Secrets are exposed to
pods via explicit declaration in pod manifests and the Kubernetes API. In this way the
Kubernetes secrets API provides an application-centric mechanism for exposing sen‐
sitive configuration information to applications in a way that’s easy to audit and lever‐
ages native OS isolation primitives.

Depending on your requirements, Kubernetes secrets may not be
secure enough for you. As of Kubernetes version 1.6, anyone with
root access on any node has access to all secrets in the cluster.
While Kubernetes utilizes native OS containerization primitives to
only expose Pods to secrets they are supposed to see, isolation
between nodes is still a work in progress.
Kubernetes version 1.7 improves this situation quite a bit. When
properly configured, it both encrypts stored secrets and restricts
the secrets that each individual node has access to.

The remainder of this section will explore how to create and manage Kubernetes
secrets, and also lay out best practices for exposing secrets to pods that require them.

Creating Secrets
Secrets are created using the Kubernetes API or the kubectl command-line tool.
Secrets hold one or more data elements as a collection of key/value pairs.

In this section we will create a secret to store a TLS key and certificate for the kuard
application that meets the storage requirements listed above.

The kuard container image does not bundle a TLS certificate or
key. This allows the kuard container to remain portable across
environments and distributable through public Docker reposito‐
ries.

The first step in creating a secret is to obtain the raw data we want to store. The TLS
key and certificate for the kuard application can be downloaded by running the fol‐
lowing commands (please don’t use these certificates outside of this example):

$ curl -O https://storage.googleapis.com/kuar-demo/kuard.crt
$ curl -O https://storage.googleapis.com/kuar-demo/kuard.key

With the kuard.crt and kuard.key files stored locally, we are ready to create a secret.
Create a secret named kuard-tls using the create secret command:

50 | Chapter 11: ConfigMaps and Secrets

$ kubectl create secret generic kuard-tls \
 --from-file=kuard.crt \
 --from-file=kuard.key

The kuard-tls secret has been created with two data elements. Run the following
command to get details:

$ kubectl describe secrets kuard-tls

Name: kuard-tls
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
kuard.crt: 1050 bytes
kuard.key: 1679 bytes

With the kuard-tls secret in place, we can consume it from a pod by using a secrets
volume.

Consuming Secrets
Secrets can be consumed using the Kubernetes REST API by applications that know
how to call that API directly. However, our goal is to keep applications portable. Not
only should they run well in Kubernetes, but they should run, unmodified, on other
platforms.

Instead of accessing secrets through the API server, we can use a secrets volume.

Secrets volumes
Secret data can be exposed to pods using the secrets volume type. Secrets volumes are
managed by the kubelet and are created at pod creation time. Secrets are stored on
tmpfs volumes (aka RAM disks) and, as such, are not written to disk on nodes.

Each data element of a secret is stored in a separate file under the target mount point
specified in the volume mount. The kuard-tls secret contains two data elements:
kuard.crt and kuard.key. Mounting the kuard-tls secrets volume to /tls results in
the following files:

/tls/cert.pem
/tls/key.pem

The following pod manifest (Example 11-3) demonstrates how to declare a secrets vol‐
ume, which exposes the kuard-tls secret to the kuard container under /tls.

Secrets | 51

Example 11-3. kuard-secret.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard-tls
spec:
 containers:
 - name: kuard-tls
 image: gcr.io/kuar-demo/kuard-amd64:1
 imagePullPolicy: Always
 volumeMounts:
 - name: tls-certs
 mountPath: "/tls"
 readOnly: true
 volumes:
 - name: tls-certs
 secret:
 secretName: kuard-tls

Create the kuard-tls pod using kubectl and observe the log output from the run‐
ning pod:

$ kubectl apply -f kuard-secret.yaml

Connect to the pod by running:

$ kubectl port-forward kuard-tls 8443:8443

Now navigate your browser to https://localhost:8443. You should see some invalid cer‐
tificate warnings as this is a self-signed certificate for kuard.example.com. If you navi‐
gate past this warning, you should see the kuard server hosted via HTTPS. Use the
“File system browser” tab to find the certificates on disk.

Private Docker Registries
A special use case for secrets is to store access credentials for private Docker regis‐
tries. Kubernetes supports using images stored on private registries, but access to
those images requires credentials. Private images can be stored across one or more
private registries. This presents a challenge for managing credentials for each private
registry on every possible node in the cluster.

Image pull secrets leverage the secrets API to automate the distribution of private reg‐
istry credentials. Image pull secrets are stored just like normal secrets but are con‐
sumed through the spec.imagePullSecrets Pod specification field.

Use the create secret docker-registry to create this special kind of secret:

$ kubectl create secret docker-registry my-image-pull-secret \
 --docker-username=<username> \

52 | Chapter 11: ConfigMaps and Secrets

https://localhost:8443

 --docker-password=<password> \
 --docker-email=<email-address>

Enable access to the private repository by referencing the image pull secret in the pod
manifest file, as shown in Example 11-4.

Example 11-4. kuard-secret-ips.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard-tls
spec:
 containers:
 - name: kuard-tls
 image: gcr.io/kuar-demo/kuard-amd64:1
 imagePullPolicy: Always
 volumeMounts:
 - name: tls-certs
 mountPath: "/tls"
 readOnly: true
 imagePullSecrets:
 - name: my-image-pull-secret
 volumes:
 - name: tls-certs
 secret:
 secretName: kuard-tls

Naming Constraints
The key names for data items inside of a secret or ConfigMap are defined to map to
valid environment variable names. They may begin with a dot followed by a letter or
number. Following characters include dots, dashes, and underscores. Dots cannot be
repeated and dots and underscores or dashes cannot be adjacent to each other. More
formally, this means that they must conform to the regular expression [.]?[a-zA-
Z0-9]([.]?[-_a-zA-Z0-9]*[a-zA-Z0-9])*. Some examples of valid and invalid
names for ConfigMaps or secrets are given in Table 11-1.

Table 11-1. ConfigMap and secret key examples

Valid key name Invalid key name

.auth_token Token..properties

Key.pem auth file.json

config_file _password.txt

Naming Constraints | 53

When selecting a key name consider that these keys can be exposed
to pods via a volume mount. Pick a name that is going to make
sense when specified on a command line or in a config file. Storing
a TLS key as key.pem is more clear than tls-key when configuring
applications to access secrets.

ConfigMap data values are simple UTF-8 text specified directly in the manifest. As of
Kubernetes 1.6, ConfigMaps are unable to store binary data.

Secret data values hold arbitrary data encoded using base64. The use of base64
encoding makes it possible to store binary data. This does, however, make it more
difficult to manage secrets that are stored in YAML files as the base64-encoded value
must be put in the YAML.

Managing ConfigMaps and Secrets
Secrets and ConfigMaps are managed through the Kubernetes API. The usual cre
ate, delete, get, and describe commands work for manipulating these objects.

Listing
You can use the kubectl get secrets command to list all secrets in the current
namespace:

$ kubectl get secrets

NAME TYPE DATA AGE
default-token-f5jq2 kubernetes.io/service-account-token 3 1h
kuard-tls Opaque 2 20m

Similarly, you can list all of the ConfigMaps in a namespace:

$ kubectl get configmaps

NAME DATA AGE
my-config 3 1m

kubectl describe can be used to get more details on a single object:

$ kubectl describe configmap my-config

Name: my-config
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
another-param: 13 bytes

54 | Chapter 11: ConfigMaps and Secrets

extra-param: 11 bytes
my-config.txt: 116 bytes

Finally, you can see the raw data (including values in secrets!) with something like
kubectl get configmap my-config -o yaml or kubectl get secret kuard-tls
-o yaml.

Creating
The easiest way to create a secret or a ConfigMap is via kubectl create secret
generic or kubectl create configmap. There are a variety of ways to specify the
data items that go into the secret or ConfigMap. These can be combined in a single
command:

--from-file=<filename>

Load from the file with the secret data key the same as the filename.

--from-file=<key>=<filename>

Load from the file with the secret data key explicitly specified.

--from-file=<directory>

Load all the files in the specified directory where the filename is an acceptable
key name.

--from-literal=<key>=<value>

Use the specified key/value pair directly.

Updating
You can update a ConfigMap or secret and have it reflected in running programs.
There is no need to restart if the application is configured to reread configuration val‐
ues. This is a rare feature but might be something you put in your own applications.

The following are three ways to update ConfigMaps or secrets.

Update from file
If you have a manifest for your ConfigMap or secret, you can just edit it directly and
push a new version with kubectl replace -f <filename>. You can also use kubectl
apply -f <filename> if you previously created the resource with kubectl apply.

Due to the way that datafiles are encoded into these objects, updating a configuration
can be a bit cumbersome as there is no provision in kubectl to load data from an
external file. The data must be stored directly in the YAML manifest.

Managing ConfigMaps and Secrets | 55

The most common use case is when the ConfigMap is defined as part of a directory
or list of resources and everything is created and updated together. Oftentimes these
manifests will be checked into source control.

It is generally a bad idea to check secret YAML files into source
control. It is too easy to push these files someplace public and leak
your secrets.

Recreate and update
If you store the inputs into your ConfigMaps or secrets as separate files on disk (as
opposed to embedded into YAML directly), you can use kubectl to recreate the man‐
ifest and then use it to update the object.

This will look something like this:

$ kubectl create secret generic kuard-tls \
 --from-file=kuard.crt --from-file=kuard.key \
 --dry-run -o yaml | kubectl replace -f -

This command line first creates a new secret with the same name as our existing
secret. If we just stopped there, the Kubernetes API server would return an error
complaining that we are trying to create a secret that already exists. Instead, we tell
kubectl not to actually send the data to the server but instead to dump the YAML
that it would have sent to the API server to stdout. We then pipe that to kubectl
replace and use -f - to tell it to read from stdin. In this way we can update a secret
from files on disk without having to manually base64-encode data.

Edit current version

The final way to update a ConfigMap is to use kubectl edit to bring up a version of
the ConfigMap in your editor so you can tweak it (you could also do this with a
secret, but you’d be stuck managing the base64 encoding of values on your own):

$ kubectl edit configmap my-config

You should see the ConfigMap definition in your editor. Make your desired changes
and then save and close your editor. The new version of the object will be pushed to
the Kubernetes API server.

Live updates
Once a ConfigMap or secret is updated using the API, it’ll be automatically pushed to
all volumes that use that ConfigMap or secret. It may take a few seconds, but the file
listing and contents of the files, as seen by kuard, will be updated with these new val‐

56 | Chapter 11: ConfigMaps and Secrets

ues. Using this live update feature you can update the configuration of applications
without restarting them.

Currently there is no built-in way to signal an application when a new version of a
ConfigMap is deployed. It is up to the application (or some helper script) to look for
the config files to change and reload them.

Using the file browser in kuard (accessed through kubectl port-forward) is a great
way to interactively play with dynamically updating secrets and ConfigMaps.

Summary
ConfigMaps and secrets are a great way to provide dynamic configuration in your
application. They allow you to create a container image (and pod definition) once
and reuse it in different contexts. This can include using the exact same image as you
move from dev to staging to production. It can also include using a single image
across multiple teams and services. Separating configuration from application code
will make your applications more reliable and reusable.

Summary | 57

CHAPTER 12

Deployments

So far, you have seen how to package your application as a container, create a replica‐
ted set of these containers, and use services to load-balance traffic to your service. All
of these objects are used to build a single instance of your application. They do little
to help you manage the daily or weekly cadence of releasing new versions of your
application. Indeed, both Pods and ReplicaSets are expected to be tied to specific con‐
tainer images that don’t change.

The Deployment object exists to manage the release of new versions. Deployments
represent deployed applications in a way that transcends any particular software ver‐
sion of the application. Additionally, Deployments enable you to easily move from
one version of your code to the next version of your code. This “rollout” process is
configurable and careful. It waits for a user-configurable amount of time between
upgrading individual Pods. It also uses health checks to ensure that the new version
of the application is operating correctly, and stops the deployment if too many fail‐
ures occur.

Using Deployments you can simply and reliably roll out new software versions
without downtime or errors. The actual mechanics of the software rollout performed
by a Deployment is controlled by a Deployment controller that runs in the Kuber‐
netes cluster itself. This means you can let a Deployment proceed unattended and it
will still operate correctly and safely. This makes it easy to integrate Deployments
with numerous continuous delivery tools and services. Further, running server-side
makes it safe to perform a rollout from places with poor or intermittent internet con‐
nectivity. Imagine rolling out a new version of your software from your phone while
riding on the subway. Deployments make this possible and safe!

59

When Kubernetes was first released, one of the most popular dem‐
onstrations of its power was the “rolling update,” which showed
how you could use a single command to seamlessly update a run‐
ning application without taking any downtime or losing requests.
This original demo was based on the kubectl rolling-update
command, which is still available in the command-line tool, but its
functionality has largely been subsumed by the Deployment object.

Your First Deployment
At the beginning of this book, you created a Pod by running kubectl run. It was
something similar to:

$ kubectl run nginx --image=nginx:1.7.12

Under the hood, this was actually creating a Deployment object.

You can view this Deployment object by running:

$ kubectl get deployments nginx
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 1 1 1 1 13s

Deployment Internals
Let’s explore how Deployments actually work. Just as we learned that ReplicaSets
manage Pods, Deployments manage ReplicaSets. As with all relationships in Kuber‐
netes, this relationship is defined by labels and a label selector. You can see the label
selector by looking at the Deployment object:

$ kubectl get deployments nginx \
 -o jsonpath --template {.spec.selector.matchLabels}

map[run:nginx]

From this you can see that the Deployment is managing a ReplicaSet with the labels
run=nginx. We can use this in a label selector query across ReplicaSets to find that
specific ReplicaSet:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED CURRENT READY AGE
nginx-1128242161 1 1 1 13m

Now let’s see the relationship between a Deployment and a ReplicaSet in action. We
can resize the Deployment using the imperative scale command:

$ kubectl scale deployments nginx --replicas=2

deployment "nginx" scaled

60 | Chapter 12: Deployments

Now if we list that ReplicaSet again, we should see:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED CURRENT READY AGE
nginx-1128242161 2 2 2 13m

Scaling the Deployment has also scaled the ReplicaSet it controls.

Now let’s try the opposite, scaling the ReplicaSet:

$ kubectl scale replicasets nginx-1128242161 --replicas=1

replicaset "nginx-1128242161" scaled

Now get that ReplicaSet again:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED CURRENT READY AGE
nginx-1128242161 2 2 2 13m

That’s odd. Despite our scaling the ReplicaSet to one replica, it still has two replicas as
its desired state. What’s going on? Remember, Kubernetes is an online, self-healing
system. The top-level Deployment object is managing this ReplicaSet. When you
adjust the number of replicas to one, it no longer matches the desired state of the
Deployment, which has replicas set to 2. The Deployment controller notices this
and takes action to ensure the observed state matches the desired state, in this case
readjusting the number of replicas back to two.

If you ever want to manage that ReplicaSet directly, you need to delete the Deploy‐
ment (remember to set --cascade to false, or else it will delete the ReplicaSet and
Pods as well!).

Creating Deployments
Of course, as has been stated elsewhere, you should have a preference for declarative
management of your Kubernetes configurations. This means maintaining the state of
your deployments in YAML or JSON files on disk.

As a starting point, download this Deployment into a YAML file:

$ kubectl get deployments nginx --export -o yaml > nginx-deployment.yaml
$ kubectl replace -f nginx-deployment.yaml --save-config

If you look in the file, you will see something like this:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"

Creating Deployments | 61

 labels:
 run: nginx
 name: nginx
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 run: nginx
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - image: nginx:1.7.12
 imagePullPolicy: Always
 dnsPolicy: ClusterFirst
 restartPolicy: Always

A lot of read-only and default fields were removed in the preceding
listing for brevity. We also need to run kubectl replace --save-
config. This adds an annotation so that, when applying changes in
the future, kubectl will know what the last applied configuration
was for smarter merging of configs. If you always use kubectl
apply, this step is only required after the first time you create a
Deployment using kubectl create -f.

The Deployment spec has a very similar structure to the ReplicaSet spec. There is a
Pod template, which contains a number of containers that are created for each replica
managed by the Deployment. In addition to the Pod specification, there is also a
strategy object:

...
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
...

The strategy object dictates the different ways in which a rollout of new software
can proceed. There are two different strategies supported by Deployments: Recreate
and RollingUpdate.

62 | Chapter 12: Deployments

These are discussed in detail later in this chapter.

Managing Deployments
As with all Kubernetes objects, you can get detailed information about your Deploy‐
ment via the kubectl describe command:

$ kubectl describe deployments nginx

Name: nginx
Namespace: default
CreationTimestamp: Sat, 31 Dec 2016 09:53:32 -0800
Labels: run=nginx
Selector: run=nginx
Replicas: 2 updated | 2 total | 2 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
OldReplicaSets: <none>
NewReplicaSet: nginx-1128242161 (2/2 replicas created)
Events:
 FirstSeen ... Message
 --------- ... -------
 5m ... Scaled up replica set nginx-1128242161 to 1
 4m ... Scaled up replica set nginx-1128242161 to 2

In the output of describe there is a great deal of important information.

Two of the most important pieces of information in the output are OldReplicaSets
and NewReplicaSet. These fields point to the ReplicaSet objects this Deployment is
currently managing. If a Deployment is in the middle of a rollout, both fields will be
set to a value. If a rollout is complete, OldReplicaSets will be set to <none>.

In addition to the describe command, there is also the kubectl rollout command
for deployments. We will go into this command in more detail later on, but for now,
you can use kubectl rollout history to obtain the history of rollouts associated
with a particular Deployment. If you have a current Deployment in progress, then
you can use kubectl rollout status to obtain the current status of a rollout.

Updating Deployments
Deployments are declarative objects that describe a deployed application. The two
most common operations on a Deployment are scaling and application updates.

Scaling a Deployment
Although we previously showed how you could imperatively scale a Deployment
using the kubectl scale command, the best practice is to manage your Deployments

Managing Deployments | 63

declaratively via the YAML files, and then use those files to update your Deployment.
To scale up a Deployment, you would edit your YAML file to increase the number of
replicas:

...
spec:
 replicas: 3
...

Once you have saved and committed this change, you can update the Deployment
using the kubectl apply command:

$ kubectl apply -f nginx-deployment.yaml

This will update the desired state of the Deployment, causing it to increase the size of
the ReplicaSet it manages, and eventually create a new Pod managed by the Deploy‐
ment:

$ kubectl get deployments nginx

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 4m

Updating a Container Image
The other common use case for updating a Deployment is to roll out a new version of
the software running in one or more containers. To do this, you should likewise edit
the deployment YAML file, though in this case you are updating the container image,
rather than the number of replicas:

...
 containers:
 - image: nginx:1.9.10
 imagePullPolicy: Always
...

We are also going to put an annotation in the template for the Deployment to record
some information about the update:

...
spec:
 ...
 template:
 annotations:
 kubernetes.io/change-cause: "Update nginx to 1.9.10"
...

64 | Chapter 12: Deployments

Make sure you add this annotation to the template and not the
Deployment itself. Also, do not update the change-cause annota‐
tion when doing simple scaling operations. A modification of
change-cause is a significant change to the template and will trig‐
ger a new rollout.

Again, you can use kubectl apply to update the Deployment:

$ kubectl apply -f nginx-deployment.yaml

After you update the Deployment it will trigger a rollout, which you can then moni‐
tor via the kubectl rollout command:

$ kubectl rollout status deployments nginx
deployment nginx successfully rolled out

You can see the old and new ReplicaSets managed by the deployment along with the
images being used. Both the old and new ReplicaSets are kept around in case you
want to roll back:

$ kubectl get replicasets -o wide

NAME DESIRED CURRENT READY ... IMAGE(S) ...
nginx-1128242161 0 0 0 ... nginx:1.7.12 ...
nginx-1128635377 3 3 3 ... nginx:1.9.10 ...

If you are in the middle of a rollout and you want to temporarily pause it for some
reason (e.g., if you start seeing weird behavior in your system and you want to inves‐
tigate), you can use the pause command:

$ kubectl rollout pause deployments nginx
deployment "nginx" paused

If, after investigation, you believe the rollout can safely proceed, you can use the
resume command to start up where you left off:

$ kubectl rollout resume deployments nginx
deployment "nginx" resumed

Rollout History
Kubernetes Deployments maintain a history of rollouts, which can be useful both for
understanding the previous state of the Deployment and to roll back to a specific ver‐
sion.

You can see the deployment history by running:

$ kubectl rollout history deployment nginx

deployments "nginx"
REVISION CHANGE-CAUSE

Updating Deployments | 65

1 <none>
2 Update nginx to 1.9.10

The revision history is given in oldest to newest order. A unique revision number is
incremented for each new rollout. So far we have two: the initial deployment, the
update of the image to nginx:1.9.10.

If you are interested in more details about a particular revision, you can add the
--revision flag to view details about that specific revision:

$ kubectl rollout history deployment nginx --revision=2

deployments "nginx" with revision #2
 Labels: pod-template-hash=2738859366
 run=nginx
 Annotations: kubernetes.io/change-cause=Update nginx to 1.9.10
 Containers:
 nginx:
 Image: nginx:1.9.10
 Port:
 Volume Mounts: <none>
 Environment Variables: <none>
 No volumes.

Let’s do one more update for this example. Update the nginx version to 1.10.2 by
modifying the container version number and updating the change-cause annotation.
Apply it with kubectl apply. Our history should now have three entries:

$ kubectl rollout history deployment nginx

deployments "nginx"
REVISION CHANGE-CAUSE
1 <none>
2 Update nginx to 1.9.10
3 Update nginx to 1.10.2

Let’s say there is an issue with the latest release and you want to roll back while you
investigate. You can simply undo the last rollout:

$ kubectl rollout undo deployments nginx
deployment "nginx" rolled back

The undo command works regardless of the stage of the rollout. You can undo both
partially completed and fully completed rollouts. An undo of a rollout is actually sim‐
ply a rollout in reverse (e.g., from v2 to v1, instead of from v1 to v2), and all of the
same policies that control the rollout strategy apply to the undo strategy as well. You
can see the Deployment object simply adjusts the desired replica counts in the man‐
aged ReplicaSets:

66 | Chapter 12: Deployments

$ kubectl get replicasets -o wide

NAME DESIRED CURRENT READY ... IMAGE(S) ...
nginx-1128242161 0 0 0 ... nginx:1.7.12 ...
nginx-1570155864 0 0 0 ... nginx:1.10.2 ...
nginx-2738859366 3 3 3 ... nginx:1.9.10 ...

When using declarative files to control your production systems,
you want to, as much as possible, ensure that the checked-in mani‐
fests match what is actually running in your cluster. When you do a
kubectl rollout undo you are updating the production state in a
way that isn’t reflected in your source control.
An alternate (and perhaps preferred) way to undo a rollout is to
revert your YAML file and kubectl apply the previous version. In
this way your “change tracked configuration” more closely tracks
what is really running in your cluster.

Let’s look at our deployment history again:

$ kubectl rollout history deployment nginx

REVISION CHANGE-CAUSE
1 <none>
3 Update nginx to 1.10.2
4 Update nginx to 1.9.10

Revision 2 is missing! It turns out that when you roll back to a previous revision, the
Deployment simply reuses the template and renumbers it so that it is the latest revi‐
sion. What was revision 2 before is now reordered into revision 4.

We previously saw that you can use the kubectl rollout undo command to roll
back to a previous version of a deployment. Additionally, you can roll back to a spe‐
cific revision in the history using the --to-revision flag:

$ kubectl rollout undo deployments nginx --to-revision=3
deployment "nginx" rolled back
$ kubectl rollout history deployment nginx
deployments "nginx"
REVISION CHANGE-CAUSE
1 <none>
4 Update nginx to 1.9.10
5 Update nginx to 1.10.2

Again, the undo took revision 3, applied it, and renumbered it as revision 5.

Specifying a revision of 0 is a shorthand way of specifying the previous revision. In
this way, kubectl rollout undo is equivalent to kubectl rollout undo --to-
revision=0.

Updating Deployments | 67

By default, the complete revision history of a Deployment is kept attached to the
Deployment object itself. Over time (e.g., years) this history can grow fairly large, so
it is recommended that if you have Deployments that you expect to keep around for a
long time you set a maximum history size for the Deployment revision history, to
limit the total size of the Deployment object. For example, if you do a daily update you
may limit your revision history to 14, to keep a maximum of 2 weeks’ worth of revi‐
sions (if you don’t expect to need to roll back beyond 2 weeks).

To accomplish this, use the revisionHistoryLimit property in the Deployment spec‐
ification:

...
spec:
 # We do daily rollouts, limit the revision history to two weeks of
 # releases as we don't expect to roll back beyond that.
 revisionHistoryLimit: 14
...

Deployment Strategies
When it comes time to change the version of software implementing your service, a
Kubernetes Deployment supports two different rollout strategies:

• Recreate

• RollingUpdate

Recreate Strategy
The recreate strategy is the simpler of the two rollout strategies. It simply updates the
ReplicaSet it manages to use the new image and terminates all of the Pods associated
with the Deployment. The ReplicaSet notices that it no longer has any replicas, and
re-creates all Pods using the new image. Once the Pods are re-created, they are run‐
ning the new version.

While this strategy is fast and simple, it has one major drawback—it is potentially
catastrophic, and will almost certainly result in some site downtime. Because of this,
the recreate strategy should only be used for test deployments where a service is not
user-facing and a small amount of downtime is acceptable.

RollingUpdate Strategy
The RollingUpdate strategy is the generally preferable strategy for any user-facing
service. While it is slower than Recreate, it is also significantly more sophisticated
and robust. Using RollingUpdate, you can roll out a new version of your service
while it is still receiving user traffic, without any downtime.

68 | Chapter 12: Deployments

As you might infer from the name, the rolling update strategy works by updating a
few Pods at a time, moving incrementally until all of the Pods are running the new
version of your software.

Managing multiple versions of your service
Importantly, this means that for a period of time, both the new and the old version of
your service will be receiving requests and serving traffic. This has important impli‐
cations for how you build your software. Namely, it is critically important that each
version of your software, and all of its clients, is capable of talking interchangeably
with both a slightly older and a slightly newer version of your software.

As an example of why this is important, consider the following scenario:
You are in the middle of rolling out your frontend software; half of your servers are
running version 1 and half are running version 2. A user makes an initial request to
your service and downloads a client-side JavaScript library that implements your UI.
This request is serviced by a version 1 server and thus the user receives the version 1
client library. This client library runs in the user’s browser and makes subsequent API
requests to your service. These API requests happen to be routed to a version 2 server;
thus, version 1 of your JavaScript client library is talking to version 2 of your API
server. If you haven’t ensured compatibility between these versions, your application
won’t function correctly.

At first, this might seem like an extra burden. But in truth, you always had this prob‐
lem; you may just not have noticed. Concretely, a user can make a request at time t
just before you initiate an update. This request is serviced by a version 1 server. At
t_1 you update your service to version 2. At t_2 the version 1 client code running on
the user’s browser runs and hits an API endpoint being operated by a version 2
server. No matter how you update your software, you have to maintain backward and
forward compatibility for reliable updates. The nature of the rolling update strategy
simply makes it more clear and explicit that this is something to think about.

Note that this doesn’t just apply to JavaScript clients—the same thing is true of client
libraries that are compiled into other services that make calls to your service. Just
because you updated doesn’t mean they have updated their client libraries. This sort
of backward compatibility is critical to decoupling your service from systems that
depend on your service. If you don’t formalize your APIs and decouple yourself, you
are forced to carefully manage your rollouts with all of the other systems that call into
your service. This kind of tight coupling makes it extremely hard to produce the nec‐
essary agility to be able to push out new software every week, let alone every hour or
every day. In the de-coupled architecture shown in Figure 12-1, the frontend is isolated
from the backend via an API contract and a load balancer, whereas in the coupled
architecture, a thick client compiled into the frontend is used to connect directly to
the backends.

Deployment Strategies | 69

Figure 12-1. Diagrams of both de-coupled (left) and couple (right) application architec‐
tures

Configuring a rolling update

RollingUpdate is a fairly generic strategy; it can be used to update a variety of appli‐
cations in a variety of settings. Consequently, the rolling update itself is quite configu‐
rable; you can tune its behavior to suit your particular needs. There are two
parameters you can use to tune the rolling update behavior: maxUnavailable and max
Surge.

The maxUnavailable parameter sets the maximum number of Pods that can be
unavailable during a rolling update. It can either be set to an absolute number (e.g., 3
meaning a maximum of three Pods can be unavailable) or to a percentage (e.g., 20%
meaning a maximum of 20% of the desired number of replicas can be unavailable).

Generally speaking, using a percentage is a good approach for most services, since the
value is correctly applicable regardless of the desired number of replicas in the
Deployment. However, there are times when you may want to use an absolute num‐
ber (e.g., limiting the maximum unavailable pods to one).

At its core, the maxUnavailable parameter helps tune how quickly a rolling update
proceeds. For example, if you set maxUnavailable to 50%, then the rolling update will
immediately scale the old ReplicaSet down to 50% of its original size. If you have four
replicas, it will scale it down to two replicas. The rolling update will then replace the
removed pods by scaling the new ReplicaSet up to two replicas, for a total of four rep‐
licas (two old, two new). It will then scale the old ReplicaSet down to zero replicas, for
a total size of two new replicas. Finally, it will scale the new ReplicaSet up to four rep‐
licas, completing the rollout. Thus, with maxUnavailable set to 50%, our rollout com‐
pletes in four steps, but with only 50% of our service capacity at times.

70 | Chapter 12: Deployments

Consider instead what happens if we set maxUnavailable to 25%. In this situation,
each step is only performed with a single replica at a time and thus it takes twice as
many steps for the rollout to complete, but availability only drops to a minimum of
75% during the rollout. This illustrates how maxUnavailable allows us to trade roll‐
out speed for availability.

The observant among you will note that the recreate strategy is
actually identical to the rolling update strategy with maxUnavaila
ble set to 100%.

Using reduced capacity to achieve a successful rollout is useful either when your ser‐
vice has cyclical traffic patterns (e.g., much less traffic at night) or when you have
limited resources, so scaling to larger than the current maximum number of replicas
isn’t possible.

However, there are situations where you don’t want to fall below 100% capacity, but
you are willing to temporarily use additional resources in order to perform a rollout.
In these situations, you can set the maxUnavailable parameter to 0%, and instead con‐
trol the rollout using the maxSurge parameter. Like maxUnavailable, maxSurge can be
specified either as a specific number or a percentage.

The maxSurge parameter controls how many extra resources can be created to ach‐
ieve a rollout. To illustrate how this works, imagine we have a service with 10 replicas.
We set maxUnavailable to 0 and maxSurge to 20%. The first thing the rollout will do is
scale the new ReplicaSet up to 2 replicas, for a total of 12 (120%) in the service. It will
then scale the old ReplicaSet down to 8 replicas, for a total of 10 (8 old, 2 new) in the
service. This process proceeds until the rollout is complete. At any time, the capacity
of the service is guaranteed to be at least 100% and the maximum extra resources
used for the rollout are limited to an additional 20% of all resources.

Setting maxSurge to 100% is equivalent to a blue/green deployment.
The Deployment controller first scales the new version up to 100%
of the old version. Once the new version is healthy, it immediately
scales the old version down to 0%.

Deployment Strategies | 71

Slowing Rollouts to Ensure Service Health
The purpose of a staged rollout is to ensure that the rollout results in a healthy, stable
service running the new software version. To do this, the Deployment controller
always waits until a Pod reports that it is ready before moving on to updating the next
Pod.

The Deployment controller examines the Pod’s status as deter‐
mined by its readiness checks. Readiness checks are part of the
Pod’s health probes, and they are described in detail in Chapter 5. If
you want to use Deployments to reliably roll out your software, you
have to specify readiness health checks for the containers in your
Pod. Without these checks the Deployment controller is running
blind.

Sometimes, however, simply noticing that a Pod has become ready doesn’t give you
sufficient confidence that the Pod actually is behaving correctly. Some error condi‐
tions only occur after a period of time. For example, you could have a serious mem‐
ory leak that still takes a few minutes to show up, or you could have a bug that is only
triggered by 1% of all requests. In most real-world scenarios, you want to wait a
period of time to have high confidence that the new version is operating correctly
before you move on to updating the next Pod.

For deployments, this time to wait is defined by the minReadySeconds parameter:

...
spec:
 minReadySeconds: 60
...

Setting minReadySeconds to 60 indicates that the Deployment must wait for 60 sec‐
onds after seeing a Pod become healthy before moving on to updating the next Pod.

In addition to waiting a period of time for a Pod to become healthy, you also want to
set a timeout that limits how long the system will wait. Suppose, for example, the new
version of your service has a bug and immediately deadlocks. It will never become
ready, and in the absence of a timeout, the Deployment controller will stall your roll-
out forever.

The correct behavior in such a situation is to time out the rollout. This in turn marks
the rollout as failed. This failure status can be used to trigger alerting that can indicate
to an operator that there is a problem with the rollout.

72 | Chapter 12: Deployments

At first blush, timing out a rollout might seem like a unnecessary
complication. However, increasingly, things like rollouts are being
triggered by fully automated systems with little to no human
involvement. In such a situation, timing out becomes a critical
exception, which can either trigger an automated rollback of the
release or create a ticket/event that triggers human intervention.

To set the timeout period, the Deployment parameter progressDeadlineSeconds is
used:

...
spec:
 progressDeadlineSeconds: 600
...

This example sets the progress deadline to 10 minutes. If any particular stage in the
rollout fails to progress in 10 minutes, then the Deployment is marked as failed, and
all attempts to move the Deployment forward are halted.

It is important to note that this timeout is given in terms of Deployment progress, not
the overall length of a Deployment. In this context progress is defined as any time the
deployment creates or deletes a Pod. When that happens, the timeout clock is reset to
zero. Figure 12-2 is an illustration of the deployment lifecycle.

Figure 12-2. The Kubernetes Deployment lifecycle

Deleting a Deployment
If you ever want to delete a deployment, you can do it either with the imperative
command:

$ kubectl delete deployments nginx

or using the declarative YAML file we created earlier:

$ kubectl delete -f nginx-deployment.yaml

In either case, by default, deleting a Deployment deletes the entire service. It will
delete not just the Deployment, but also any ReplicaSets being managed by the

Deleting a Deployment | 73

Deployment, as well as any Pods being managed by the ReplicaSets. As with Replica‐
Sets, if this is not the desired behavior, you can use the --cascade=false flag to
exclusively delete the Deployment object.

Summary
At the end of the day, the primary goal of Kubernetes is to make it easy for you to
build and deploy reliable distributed systems. This means not just instantiating the
application once, but managing the regularly scheduled rollout of new versions of
that software service. Deployments are a critical piece of reliable rollouts and rollout
management for your services.

74 | Chapter 12: Deployments

About the Authors
Kelsey Hightower has worn every hat possible throughout his career in tech, and
enjoys leadership roles focused on making things happen and shipping software. Kel‐
sey is a strong open source advocate focused on building simple tools that make peo‐
ple smile. When he is not slinging Go code, you can catch him giving technical
workshops covering everything from programming to system administration.

Joe Beda started his career at Microsoft working on Internet Explorer (he was young
and naive). Throughout 7 years at Microsoft and 10 at Google, Joe has worked on
GUI frameworks, real-time voice and chat, telephony, machine learning for ads, and
cloud computing. Most notably, while at Google, Joe started the Google Compute
Engine and, along with Brendan and Craig McLuckie, created Kubernetes. Joe is now
CTO of Heptio, a startup he founded along with Craig. Joe proudly calls Seattle
home.

Brendan Burns began his career with a brief stint in the software industry followed
by a PhD in Robotics focused on motion planning for human-like robot arms. This
was followed by a brief stint as a professor of computer science. Eventually, he
returned to Seattle and joined Google, where he worked on web search infrastructure
with a special focus on low-latency indexing. While at Google, he created the Kuber‐
netes project with Joe and Craig McLuckie. Brendan is currently a Director of Engi‐
neering at Microsoft Azure.

Colophon
The animal on the cover of Kubernetes: Up and Running is a bottlenose dolphin (Tur‐
siops truncatus).

Bottlenose dolphins live in groups typically of 10–30 members, called pods, but
group size varies from single individuals to more than 1,000. Dolphins often work as
a team to harvest fish schools, but they also hunt individually. Dolphins search for
prey primarily using echolocation, which is similar to sonar.

The Bottlenose dolphin is found in most tropical to temperate oceans; its color is
grey, with the shade of grey varying among populations; it can be bluish-grey,
brownish-grey, or even nearly black, and is often darker on the back from the ros‐
trum to behind the dorsal fin. Bottlenose dolphins have the largest brain to body
mass ratio of any mammal on Earth, sharing close ratios with those of humans and
other great apes, which more than likely attributes to their incredibly high intelli‐
gence and emotional intelligence.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from British Quadrapeds. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Heptio
	Copyright
	Table of Contents
	Foreword
	Chapter 4. Common kubectl Commands
	Namespaces
	Contexts
	Viewing Kubernetes API Objects
	Creating, Updating, and Destroying Kubernetes Objects
	Labeling and Annotating Objects
	Debugging Commands
	Summary

	Chapter 5. Pods
	Pods in Kubernetes
	Thinking with Pods
	The Pod Manifest
	Creating a Pod
	Creating a Pod Manifest

	Running Pods
	Listing Pods
	Pod Details
	Deleting a Pod

	Accessing Your Pod
	Using Port Forwarding
	Getting More Info with Logs
	Running Commands in Your Container with exec
	Copying Files to and from Containers

	Health Checks
	Liveness Probe
	Readiness Probe
	Types of Health Checks

	Resource Management
	Resource Requests: Minimum Required Resources
	Capping Resource Usage with Limits

	Persisting Data with Volumes
	Using Volumes with Pods
	Different Ways of Using Volumes with Pods
	Persisting Data Using Remote Disks

	Putting It All Together
	Summary

	Chapter 6. Labels and Annotations
	Labels
	Applying Labels
	Modifying Labels
	Label Selectors
	Label Selectors in API Objects

	Annotations
	Defining Annotations

	Cleanup
	Summary

	Chapter 7. Service Discovery
	What Is Service Discovery?
	The Service Object
	Service DNS
	Readiness Checks

	Looking Beyond the Cluster
	Cloud Integration
	Advanced Details
	Endpoints
	Manual Service Discovery
	kube-proxy and Cluster IPs
	Cluster IP Environment Variables

	Cleanup
	Summary

	Chapter 11. ConfigMaps and Secrets
	ConfigMaps
	Creating ConfigMaps
	Using a ConfigMap

	Secrets
	Creating Secrets
	Consuming Secrets
	Private Docker Registries

	Naming Constraints
	Managing ConfigMaps and Secrets
	Listing
	Creating
	Updating

	Summary

	Chapter 12. Deployments
	Your First Deployment
	Deployment Internals

	Creating Deployments
	Managing Deployments
	Updating Deployments
	Scaling a Deployment
	Updating a Container Image
	Rollout History

	Deployment Strategies
	Recreate Strategy
	RollingUpdate Strategy
	Slowing Rollouts to Ensure Service Health

	Deleting a Deployment
	Summary

	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

